Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 562, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840040

RESUMO

BACKGROUND: The impact of chickens on maintaining the economy and livelihood of rural communities cannot be overemphasized. In recent years, mycoplasmosis has become one of the diseases that affect the success of South African chicken production. Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are the most prevalent strains of Mycoplasma in South Africa. MG and MS are significant respiratory pathogens affecting the productivity of chickens. The present study aimed to molecularly detect using qPCR and characterize the presence of MG and MS using phylogenetic analysis. The phylogenetic analysis was utilized to clarify general evolutionary relationships between related taxa of different MG and MS observed in tracheal swabs from South African chicken breeds. METHODS: Forty-five tracheal swabs of the Lohmann Brown (n = 9), Rhode Island Red (n = 9), Ovambo (n = 9), Venda (n = 9), and Potchefstroom Koekoek (n = 9) breeds were collected from symptomatic chickens present in the commercial farm. To detect MG and MS, DNA was extracted from tracheal swabs and faecal samples, and qPCR was performed with a 16 s rRNA (310 bp) and vlhA (400 bp) gene fragment. Following the sequencing of all the amplicons, MG, and MS dendrograms showing the evolutionary relationships among the five South African chicken breeds and the GeneBank reference population were constructed. RESULTS: The qPCR revealed the presence of MG and MS in 22% (2/9) of the tracheal swab samples tested for MS only in Rhode Island Red breeds; 66.6% (6/9) and 33% (3/9) of the tested samples in Ovambo breeds; and 11.1% (1/9) and 44.4% (4/9) of the tested samples in Venda breeds. No MG or MS were detected in the Lohmann Brown or Potchefstroom Koekoek breed. Furthermore, qPCR revealed the presence of MG in pooled faecal samples from Lohmann Brown and Ovambo breeds. Eight different bacterial isolates were recognized from both samples. Four isolates were of the 16 s ribosomal ribonucleic acid (rRNA) gene (named PT/MG51/ck/00, PT/MG48/ck/00, PT/MG41/ck/00 and PT/MG71/ck/00) gene of Mycoplasma gallisepticum, and the other was Mycoplasma Synoviae variable lipoprotein hemagglutinin A (vlhA) gene (named PT/MSA22/ck/01, PT/MS41/ck/01, PT/MS74/ck/01 and PT/MS46/ck/01) which were available in GenBank. These isolates were successfully sequenced with 95-100% similarity to the isolates from the gene bank. CONCLUSION: The study revealed the presence of both MG and MS in the chicken breeds sampled. Furthermore, the different breeds of chicken were found to be susceptible to infection under the intensive or commercial management system. Therefore, continuous surveillance is encouraged to prevent the spread and outbreak of MG and MS in the poultry industry in South Africa.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Mycoplasma synoviae , Filogenia , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , África do Sul , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/epidemiologia , Doenças das Aves Domésticas/microbiologia , Mycoplasma synoviae/genética , Mycoplasma synoviae/isolamento & purificação , Mycoplasma synoviae/classificação , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/isolamento & purificação , Mycoplasma gallisepticum/classificação , Traqueia/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Fezes/microbiologia
2.
Animals (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808962

RESUMO

In recent years, diseases caused by pathogenic bacteria have profoundly impacted chicken production by causing economic loss in chicken products and by-product revenues. MBL (mannose-binding lectin) is part of the innate immune system (IIS), which is the host's first line defense against pathogens. The IIS functions centrally by identifying pathogen-specific microorganism-associated molecular patterns (MAMPs) with the help of pattern recognition receptors (PRRs). Studies have classified mannose-binding lectin (MBL) as one of the PRR molecules which belong to the C-type lectin family. The protective role of MBL lies in its ability to activate the complement system via the lectin pathway and there seems to be a direct link between the chicken's health status and the MBL concentration in the serum. Several methods have been used to detect the presence, the level and the structure of MBL in chickens such as Enzyme-linked immunosorbent assay (ELISA), Polymerase Chain Reaction (PCR) among others. The concentration of MBL in the chicken ranges from 0.4 to 35 µg/mL and can be at peak levels at three to nine days at entry of pathogens. The variations observed are known to depend on the bacterial strains, breed and age of the chicken and possibly the feed manipulation strategies. However, when chicken MBL (cMBL) becomes deficient, it can result in malfunctioning of the innate immune system, which can predispose chickens to diseases. This article aimed to discuss the importance and components of mannose-binding lectin (MBL) in chickens, its mode of actions, and the different methods used to detect MBL. Therefore, more studies are recommended to explore the causes for low and high cMBL production in chicken breeds and the possible effect of feed manipulation strategies in enhancing cMBL production.

3.
Vet World ; 13(1): 26-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158147

RESUMO

AIM: A longitudinal study was conducted to assess the epidemiology of common gastrointestinal parasite (GIP) infections affecting goats in South Africa as influenced by agro-ecological zone (AEZ), sampling season, and the age and sex of animals. MATERIALS AND METHODS: A total of 288 goats (101 male and 187 female) were randomly sampled during winter and summer in areas representing four AEZs (arid: 80; semi-arid: 76; humid: 62; and dry sub-humid: 70) of South Africa. Fecal samples from each animal were collected from the rectum, and the presence of GIP eggs was determined using a modified McMaster technique. A sample was considered positive when a minimum of one GIP egg was detected under the microscope. Fecal cultures were prepared, and infective larvae were collected and identified. The data were analyzed by MiniTab17 (2017) using the FREQ procedure, and the association between the independent factors and the prevalence of various GIPs were evaluated using the Pearson Chi-square test (p<0.05). RESULTS: The overall prevalence of GIP in the present study was 37.1%, with a mean prevalence of 30.0, 26.4, 31.1, 36.6, and 59.6% for Eimeria spp., Trichuris, Strongyloides papillosus, Moniezia spp., and strongyles, respectively. There was a significant (p<0.05) association between the prevalence of strongyles, Trichuris, Moniezia spp., and AEZs, whereas an insignificant (p>0.05) association was observed for the prevalence of Eimeria spp. and S. papillosus. A significant (p<0.05) association between goat age and prevalence of all GIPs was observed, where the prevalence was higher in young goats, followed by adults, and then by suckling goats. The prevalence of various GIPs was similar between male and female goats. The percentage of infection with Eimeria spp., Trichuris, S. papillosus, and strongyle parasitic infections was marginally higher in males than in females, whereas that of the Moniezia spp. was higher in females. A significant (p<0.05) association between the prevalence of Eimeria spp. and sampling season was observed, and there was an insignificant (p>0.05) association between the other GIPs and sampling season. The prevalence of Eimeria spp. infection was higher in winter (34.0%) than in summer (26.0%). CONCLUSION: AEZs and goat age are the most important risk factors influencing GIP infections in South African communal goats. These epidemiological parameters are important for outlining effective parasite control management systems against these GIPs in goats.

4.
Poult Sci ; 98(10): 4549-4554, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111931

RESUMO

The study was conducted to determine the influence of male-male competition on reproductive performance and male mortality of Cobb 500 broiler breeder flocks following double intra-spiking. Broiler breeders were housed in 3 open-sided houses each accommodating 8,200 females and 820 males. Males of the same age on the same farm were exchanged between the houses (intra-spiking) to stimulate competition thereby changing the social hierarchy of each house. Intra-spiking was performed by replacing 25, 35, and 45% of males between the houses at 40 and 48 weeks of age (WOA), respectively. Eggs were collected from 36 to 55 WOA, when egg fertility and male mortality were recorded. Data was analyzed using repeated measures techniques of SAS 9.4, modeling the covariance structure of the observed data. Male-male competition (intra-spiking), age and their interaction significantly (P < 0.05) influenced egg fertility, hatchability, and male mortality. Average fertility and hatchability were increased in the 45% intra-spiked flocks (P < 0.05) (95.89 and 85.83%) compared with the 35% (95.13 and 86.30%) and 25% (94.42 and 0.23%) intra-spiked flocks. Fertility and hatchability with the 45% double intra-spiked flocks was consistently higher (P < 0.05) over time than the other double intra-spiked flocks. Male mortality was lower (P < 0.05) in the 45% intra-spiked flock (0.23%) than in the 35% (0.40%) and 25% (0.44%) intra-spiked flocks. After double intra-spiking, the male mortality in the 25 and 35% double intra-spiked flocks significantly increased (P < 0.05), whereas that of 45% intra-spiked flocks remained relatively low. Male mortality in the 45% intra-spiked flocks was consistently low over time than other double intra-spike levels from 45 WOA until the end of the trial. Noteworthy, egg fertility and hatchability gradually decreased, and mortality increased with increasing flock age toward the end of the productive life cycle. High level of male-male competition (45%) showed great promise as a tool to slow down the decrease in egg fertility and hatchability, and reduce male mortality in aging broiler breeder flocks.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/fisiologia , Comportamento Competitivo , Mortalidade , Reprodução , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...