Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 13065-13081, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859286

RESUMO

In order to improve the safety of spacecraft, the research on artificial neural network and digital twin technology based on, to our best knowledge, a novel fiber Bragg grating (FBG) sensor array is proposed for intelligent sensing monitoring of spacecraft on-orbit collisions. Femtosecond FBG arrays were fabricated on the novel oxide-doped fiber by point-by-point writing technique. The femtosecond FBG is analyzed using the time-dependent perturbation theory of quantum mechanics. The FBG array can achieve high-temperature measurement of 1100 °C and large strain measurement of 15000 µÎµ. The sensing arrays were deployed on the surface of the spacecraft. Constructed the multi-layer perceptron neural network structure and convolutional neural network structure. 1200 samples were trained. Conducted model accuracy testing. The accuracy rate is above 98%, and accuracy verification has been implemented. The digital twin model was designed based on various data such as strain and temperature of the spacecraft structure under impact monitored by FBG sensors. A precise mapping has been formed between the physical entities of spacecraft and digital twins. Empower spacecraft with functions such as self-monitoring, judgment, and response. To ensure the stable and safe operation of spacecraft.

2.
Opt Express ; 32(4): 6215-6231, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439330

RESUMO

A kind of curved long-period fiber grating(CLPFG) engraved by CO2 laser based on oxide-doped fiber was designed to monitor the structural integrity of propellant. The mechanical damage characteristics of the propellant were analyzed. The sensor model is constructed and the refractive index modulation characteristics of the CLPFG are analyzed. The strain coupling characteristics and the strain transfer efficiency of the interface between the CLPFG and the propellant are clarified. Propellant modules with implanted CLPFG were fabricated. The novel grating sensor has been effectively coated and structurally packaged. Conducted experiments on strain and temperature of propellant modules. The large strain measurement of propellant from 0 µÎµ to 24000 µÎµ is realized. Solved the thorny problem of large strain measurement for propellants. In addition, the temperature discrimination measurement in the temperature range of 30 ℃ to 250 ℃ can be realized. Sensor exhibit extremely high stability characteristics and has good compatibility with propellants. The sensor implantation and extraction structure has been designed to improve the survival rate of the sensor inside the solid rocket motors (SRM). Sensors can accurately measure the mechanical and thermal state parameters of propellants, providing effective data support for the health management of SRM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...