Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961395

RESUMO

Microbubbles (MBs) combined with focused ultrasound (FUS) have emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery to the brain. However, the safety and biological consequences of BBB opening remain incompletely understood. This study investigates the effects of varying microbubble volume doses (MVD) and ultrasound mechanical indices (MI) on BBB opening and the sterile inflammatory response (SIR) using high-resolution ultra-high field MRI-guided FUS in mouse brains. The results demonstrate that both MVD and MI significantly influence the extent of BBB opening, with higher doses and mechanical indices leading to increased permeability. Moreover, RNA sequencing reveals upregulated inflammatory pathways and immune cell infiltration after BBB opening, suggesting the presence and extent of SIR. Gene set enrichment analysis identifies 12 gene sets associated with inflammatory responses that are upregulated at higher doses of MVD or MI. A therapeutic window is established between significant BBB opening and the onset of SIR, providing operating regimes for avoiding each three classes of increasing damage from stimulation of the NFκB pathway via TNFL signaling to apoptosis. This study contributes to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and sheds light on the underlying molecular mechanisms of the sterile inflammatory response. Significance Statement: The significance of this study lies in its comprehensive investigation of microbubble-facilitated focused ultrasound for blood-brain barrier (BBB) opening. By systematically exploring various combinations of microbubble volume doses and ultrasound mechanical indices, the study reveals their direct impact on the extent of BBB permeability and the induction of sterile inflammatory response (SIR). The establishment of a therapeutic window between significant BBB opening and the onset of SIR provides critical insights for safe and targeted drug delivery to the brain. These findings advance our understanding of the biological consequences of BBB opening and contribute to optimizing parameters for clinical applications, thus minimizing potential health risks, and maximizing the therapeutic potential of this technique.

2.
J Neurosci ; 39(24): 4829-4841, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30971439

RESUMO

Absence epilepsy is a heritable human neurological disorder characterized by brief nonconvulsive seizures with behavioral arrest, moderate-to-severe loss of consciousness (absence), and distinct spike-wave discharges (SWDs) in the EEG and electrocorticogram (ECoG). Genetic models of this disorder have been created by selectively inbreeding rats for absence seizure-like events with similar electrical and behavioral characteristics. However, these events are also common in outbred laboratory rats, raising concerns about whether SWD/immobility accurately reflects absence epilepsy as opposed to "normal" rodent behavior. We hypothesized that, if SWD/immobility models absence seizures, it would not exist in wild-caught rats due to the pressures of natural selection. To test this hypothesis, we compared chronic video/electrocorticogram recordings from male and female wild-caught (Brown-Norway [BN]) rats to recordings from laboratory outbred BN, outbred Long-Evans, and inbred WAG/Rij rats (i.e., a model of absence epilepsy). Wild-caught BN rats displayed absence-like SWD/immobility events that were highly similar to outbred BN rats in terms of spike-wave morphology, frequency, diurnal rhythmicity, associated immobility, and sensitivity to the anti-absence drug, ethosuximide; however, SWD bursts were less frequent and of shorter duration in wild-caught and outbred BN rats than the outbred Long-Evans and inbred WAG/Rij strains. We conclude that SWD/immobility in rats does not represent absence seizures, although they appear to have many similarities. In wild rats, SWD/immobility appears to represent normal brain activity that does not reduce survival in natural environments, a conclusion that logically extends to outbred laboratory rats and possibly to those that have been inbred to model absence epilepsy.SIGNIFICANCE STATEMENT Spike-wave discharges (SWDs), behavioral arrest, and diminished consciousness are cardinal signs of seizures in human absence epilepsy and are used to model this disorder in inbred rats. These characteristics, however, are routinely found in outbred laboratory rats, leading to debate on whether SWD/immobility is a valid model of absence seizures. The SWD/immobility events in wild-caught rats appear equivalent to those found in outbred and inbred rat strains, except for lower incidence and shorter durations. Our results indicate that the electrophysiological and behavioral characteristics of events underlying hypothetical absence epilepsy in rodent models are found in wild rats captured in their natural environment. Other criteria beyond observation of SWDs and associated immobility are required to objectively establish absence epilepsy in rat models.


Assuntos
Convulsões/psicologia , Animais , Animais Selvagens , Anticonvulsivantes/farmacologia , Ritmo Circadiano , Eletrocorticografia , Eletroencefalografia , Etossuximida/farmacologia , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Movimento , Ratos , Ratos Long-Evans , Convulsões/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...