Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Carbon Balance Manag ; 16(1): 16, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34013424

RESUMO

BACKGROUND: Removals caused by both natural and anthropogenic drivers such as logging and fire in miombo woodlands causes substantial carbon emissions. Here we present drivers and their effects on the variations on the number of stems and aboveground carbon (AGC) removals based on an analysis of Tanzania's national forest inventory (NFI) data extracted from the National Forest Resources Assessment and Monitoring (NAFORMA) database using allometric models that utilize stump diameter as the sole predictor. RESULTS: Drivers of AGC removals in miombo woodlands of mainland Tanzania in order of importance were timber, fire, shifting cultivation, charcoal, natural death, firewood collection, poles, grazing by wildlife animals, carvings, grazing by domestic animals, and mining. The average number of stems and AGC removals by driver ranged from 0.006 to 16.587 stems ha-1 year-1 and 0.0-1.273 tCha-1 year-1 respectively. Furthermore, charcoal, shifting cultivation and fuelwood caused higher tree removals as opposed to timber, natural death and fire that accounted for higher AGC removals. CONCLUSIONS: Drivers caused substantial effects on the number of stems and carbon removals. Increased mitigation efforts in addressing removals by timber, fires, shifting cultivation, charcoal and natural death would be effective in mitigating degradation in miombo woodlands of Tanzania. Additionally, site-specific studies need to be conducted to bring information that would be used for managing woodlands at local levels. This kind of study need to be conducted in other vegetation types like montane and Mangrove forest at national scale in Tanzania.

2.
Carbon Balance Manag ; 14(1): 4, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31030302

RESUMO

BACKGROUND: Developing countries participating in the mitigation mechanism of reducing emissions from deforestation and forest degradation (REDD+), are required to establish a forest reference emission level (FREL), if they wish to seek financial support to reduce carbon emissions from deforestation and forest degradation. However, establishment of FREL relies heavily on the accurate estimates of carbon stock as one of the input variable for computation of the emission factors (EFs). The product of an EF and activity data, such as the area of deforestation, results in the total emissions needed for establishment of FREL. This study presents the carbon stock estimates for different land cover classes based on an analysis of Tanzania's national forest inventory data generated through the National Forest Resources Monitoring and Assessment (NAFORMA). RESULTS: Carbon stocks were estimated in three carbon pools, namely aboveground, belowground, and deadwood for each of the three land cover classes (i.e. Forest, non-forest, and wetland). The weighted average carbon stock was 33.35 t C ha-1 for forest land, 4.28 t ha-1 for wetland and 5.81 t ha-1 for non-forest land. The uncertainty values were 0.9% for forest land, 11.3% for wetland and 1.8% for non-forest land. Average carbon stocks for land cover sub-classes, which make up the above mentioned major land cover classes, are also presented in our study. CONCLUSIONS: The values presented in this paper correspond to IPCC tier 3 and can be used for carbon estimation at the national scale for the respective major primary vegetation type for various purposes including REDD+. However, if local based estimates values are needed, the use of auxiliary data to enhance the precision of the area of interest is recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...