RESUMO
Ultraviolet (UV) absorbents and industrial antioxidants are two groups of plastic-derived contaminants of emerging environmental concern. However, their distribution and fate are poorly understood in Arctic wildlife. In the present study, 16 UV absorbents (10 benzotriazole UV stabilizers (BZT-UVs) and 6 organic UV filters (UVFs)) and 7 industrial antioxidants (6 aromatic secondary amines (Ar-SAs) and 2,6-di-tert-butylphenol (26DTBP)) were analyzed in the livers of thick-billed murre (Uria lomvia; n = 28), northern fulmar (Fulmarus glacialis; n = 4), black guillemot (Cepphus grylle; n = 11), polar bear (Ursus maritimus; n = 18), beluga whale (Delphinapterus leucas; n = 10), landlocked (n = 25) and sea-run (n = 10) Arctic char (Salvelinus alpinus) from the Canadian Arctic collected between 2017 and 2021. Compared to industrial antioxidants (median range: ΣAr-SAs: not calculated due to detection frequency < 30 % (NA)-4.06 ng/g, wet weight (ww); 26DTBP: NA-1.91 ng/g ww), UV absorbents (median range: ΣBZT-UVs: NA-8.71 ng/g ww; ΣUVFs: NA-48.3 ng/g ww) generally showed greater concentrations in the liver of these species. Seabirds accumulated higher levels of these contaminants (median range: ΣBZT-UVs: 3.38-8.71 ng/g ww; ΣUVFs: NA-48.3 ng/g ww; ΣAr-SAs: 0.07-4.06 ng/g ww; 26DTBP: NA-1.14 ng/g ww)) than the other groups (median range: ΣBZT-UVs: NA-1.31 ng/g ww; ΣUVFs: NA-4.22 ng/g ww; ΣAr-SAs: NA; 26DTBP: NA-1.91 ng/g ww), suggesting that seabirds may be useful indicator species for future long-term monitoring. The livers of Arctic char in the Canadian Arctic generally contain lower levels of these contaminants than those of freshwater fish in temperate regions. Spatial variations were found in the liver of black guillemots, Hudson Bay polar bears, and landlocked char for some target contaminants, indicating differences in the levels of these contaminants in their surrounding environment or diet. Consumption of liver tissues from these species may expose humans to varying levels of UV absorbents and industrial antioxidants. This study establishes a baseline for future research of the spatial and temporal trends of these contaminants in Arctic species. It provides the basis for elucidating the fate of these contaminants and assessing their adverse effects at environmental-relevant concentrations in the Arctic. Factors influencing the accumulation patterns of these contaminants in Arctic biota and their potential health risks require further investigation.
Assuntos
Antioxidantes , Monitoramento Ambiental , Animais , Regiões Árticas , Antioxidantes/análise , Antioxidantes/metabolismo , Canadá , Aves/metabolismo , Peixes/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Mamíferos/metabolismo , Fígado/metabolismo , Raios UltravioletaRESUMO
Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967-2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.
Assuntos
Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Regiões Árticas , Poluentes Atmosféricos/análise , Ácidos Alcanossulfônicos/análise , NunavutRESUMO
Substituted diphenylamine antioxidants (SDPAs) and benzotriazole UV stabilizers (BZT-UVs) are industrial additives of emerging environmental concern. However, little is known about their environmental fate and bioaccumulation. This study investigated the concentrations of SDPAs and BZT-UVs in the water, sediment and biota samples in the freshwater ecosystem and adjacent riparian environment using Hamilton Harbour in the Great Lakes of North America as a study site. The bioaccumulation factors and trophodynamics of these contaminants were studied using field-collected samples. Eight target SDPAs and two BZT-UVs (2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328)) were frequently detected in the sediment, water and biota samples. UV328 showed significantly greater concentrations in water (0.28-2.8 ng L-1) and sediment (8.3-48 ng g-1, dry weight) than other target contaminants, implying greater contamination of UV328 in Hamilton Harbour. SDPAs exhibited trophic dilution in species living in the water, whereas UV234 was biomagnified in the same samples. No clear trophodynamic trend was found for UV328 for water-respiring species. Air-breathing invertebrates had higher concentrations of both SDPAs and BZT-UVs than water-respiring invertebrates, and biomagnification was observed particularly for adult dragonflies. These results suggest that the trophodynamics of SDPAs and BZT-UVs vary depending on whether the food web is terrestrial or aquatic. Future research should investigate the occurrence and partitioning of SDPAs and BZT-UVs in the air-water interface and evaluate the toxicities of these contaminants in air-breathing species.
Assuntos
Antioxidantes , Difenilamina , Ecossistema , Monitoramento Ambiental , Triazóis , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Animais , Antioxidantes/metabolismo , Triazóis/análise , Água Doce/química , Bioacumulação , Sedimentos Geológicos/química , Cadeia AlimentarRESUMO
Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.
Assuntos
Biomarcadores , Golfinho Nariz-de-Garrafa , Hidrocortisona , Poluentes Químicos da Água , Animais , Golfinho Nariz-de-Garrafa/metabolismo , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Monitoramento Ambiental , Fluorocarbonos , Estresse Fisiológico , Feminino , Masculino , South Carolina , FloridaRESUMO
We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.
Assuntos
Poeira , Lagos , Estações do Ano , Regiões Árticas , Neve , Mudança ClimáticaRESUMO
Organophosphate esters (OPEs) have been used as flame retardants, plasticizers, and anti-foaming agents over the past several decades. Of particular interest is the long range transport potential of OPEs given their ubiquitous detection in Arctic marine air. Here we report 19 OPE congeners in ice cores drilled on remote icefields and ice caps in the Canadian high Arctic. A multi-decadal temporal profile was constructed in the sectioned ice cores representing a time scale spanning the 1970s to 2014-16. In the Devon Ice Cap record, the annual total OPE (∑OPEs) depositional flux for all of 2014 was 81 µg m-2, with the profile dominated by triphenylphosphate (TPP, 9.4 µg m-2) and tris(2-chloroisopropyl) phosphate (TCPP, 42 µg m-2). Here, many OPEs displayed an exponentially increasing depositional flux including TCPP which had a doubling time of 4.1 ± 0.44 years. At the more northern site on Mt. Oxford icefield, the OPE fluxes were lower. Here, the annual ∑OPEs flux in 2016 was 5.3 µg m-2, dominated by TCPP (1.5 µg m-2) but also tris(2-butoxyethyl) phosphate (1.5 µg m-2 TBOEP). The temporal trend for halogenated OPEs in the Mt. Oxford icefield is bell-shaped, peaking in the mid-2000s. The observation of OPEs in remote Arctic ice cores demonstrates the cryosphere as a repository for these substances, and supports the potential for long-range transport of OPEs, likely associated with aerosol transport.
Assuntos
Retardadores de Chama , Organofosfatos , Monitoramento Ambiental , Retardadores de Chama/análise , Plastificantes , Canadá , FosfatosRESUMO
Lake Hazen, the largest lake north of the Arctic circle, is being impacted by mercury (Hg) pollution and climate change. The lake is inhabited by two morphotypes of land-locked Arctic char (Salvelinus alpinus), a sensitive indicator species for pollution and climatic impacts. The objectives of this study were to describe the trends in Hg concentration over time and to determine the relationship of climate to length-at-age and Hg concentrations in each char morphotype, as well as the relationship to atmospheric Hg measurements at a nearby monitoring station. Results for Hg in char muscle were available from 20 sampling years over the period 1990 to 2021. We found significant declines in Hg concentrations for both morphotypes during the 31-year study period. Increased rain and earlier freeze-up of lake ice during the summer growing season was linked to increased length-at-age in both char morphotypes. For the large morphotype, higher total gaseous Hg in the fall and winter seasons was related to higher concentrations of Hg in char, while increased glacial runoff was related to decreases in char Hg. For the small morphotype char, increased snow and snow accumulation in the fall season were linked to declines in char Hg concentration. The Atlantic Multidecadal Oscillation and Arctic Oscillation were positively related to the large char Hg trend and Arctic Oscillation was positively related to the small char Hg trend. Significant trend relationships between atmospheric Hg and Hg in biota in remote regions are rare and uniquely valuable for evaluation of the effectiveness of the Minamata Convention and related monitoring efforts.
Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Lagos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Truta , Regiões ÁrticasRESUMO
Climate-driven changes including rising air temperatures, enhanced permafrost degradation, and altered precipitation patterns can have profound effects on contaminants, such as mercury (Hg), in High Arctic lakes. Two physically similar lakes, East Lake and West Lake at the Cape Bounty Arctic Watershed Observatory on Melville Island, Nunavut, Canada are being affected by climate change differently. Both lakes have experienced permafrost degradation in their catchments; however, West Lake has also undergone multiple underwater Mass Movement Events (MMEs; beginning in fall 2008), leading to a sustained 50-fold increase in turbidity. This provided the unique opportunity to understand the potential impacts of permafrost degradation and other climate-related effects on Hg concentrations and body condition of landlocked Arctic char (Salvelinus alpinus), an important sentinel species across the Circum-Arctic. Our objectives were to assess temporal trends in char Hg concentrations and to determine potential mechanisms driving the trends. There was a significant decrease in Hg concentrations in East Lake char, averaging 6.5%/year and 3.8%/year for length-adjusted and age-adjusted means, respectively, from 2008 to 2019. Conversely, in West Lake there was a significant increase, averaging 7.9%/year and 8.0%/year for length-adjusted and age-adjusted mean Hg concentrations, respectively, for 2009 to 2017 (the last year with sufficient sample size). The best predictors of length-adjusted Hg concentrations in West Lake were carbon and nitrogen stable isotope ratios, indicating a shift in diet including possible dietary starvation brought on by the profound increase in lake turbidity. Our study provides an example of how increasing lake turbidity, a likely consequence of climate warming in Arctic lakes, may influence fish condition and Hg concentrations. Environ Toxicol Chem 2023;42:2712-2725. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Lagos , Monitoramento Ambiental , Canadá , Truta/metabolismo , Regiões Árticas , Poluentes Químicos da Água/análiseRESUMO
Over the past 50 years, there has been a tremendous expansion in the measurement of chemical contaminants in environmental media. But how many chemicals have actually been determined, and do they represent a significant fraction of substances in commerce or of chemicals of concern? To address these questions, we conducted a bibliometric survey to identify what individual chemicals have been determined in environmental media and their trends over the past 50 years. The CAplus database of CAS, a Division of the American Chemical Society, was searched for indexing roles "analytical study" and "pollutant" yielding a final list of 19,776 CAS Registry Numbers (CASRNs). That list was then used to link the CASRNs to biological studies, yielding a data set of 9.251 × 106 total counts of the CASRNs over a 55 year period. About 14,150 CASRNs were substances on various priority lists or their close analogs and transformation products. The top 100 most reported CASRNs accounted for 34% of the data set, confirming previous studies showing a significant bias toward repeated measurements of the same substances due to regulatory needs and the challenges of determining new, previously unmeasured, compounds. Substances listed in the industrial chemical inventories of Europe, China, and the United States accounted for only about 5% of measured substances. However, pharmaceuticals and current use pesticides were widely measured accounting for 50-60% of total CASRN counts for the period 2000-2015.
Assuntos
Poluentes Ambientais , Estados Unidos , Poluentes Ambientais/análise , Bibliometria , Comércio , Indústrias , Bases de Dados FactuaisRESUMO
Increased demand for recycling plastic has prompted concerns regarding potential introduction of hazardous chemicals into recycled goods. We present a broad screening of chemicals in 21 plastic flake and pellet samples from Canadian recycling companies. From target analysis, the organophosphorus ester flame retardants and plasticizers exhibited the highest detection frequencies (DFs) (5-100%) and concentrations (
Assuntos
Retardadores de Chama , Plásticos , Plásticos/análise , Retardadores de Chama/análise , Canadá , Compostos Orgânicos , Substâncias Perigosas/análise , Cálcio/análiseRESUMO
The historical annual loading to, removal from, and cumulative burden in the Arctic Ocean for ß-hexachlorocyclohexane (ß-HCH), an isomer comprising 5-12% of technical HCH, is investigated using a mass balance box model from 1945 to 2020. Over the 76 years, loading occurred predominantly through ocean currents and river inflow (83%) and only a small portion via atmospheric transport (16%). ß-HCH started to accumulate in the Arctic Ocean in the late 1940s, reached a peak of 810 t in 1986, and decreased to 87 t in 2020, when its concentrations in the Arctic water and air were â¼30 ng m-3 and â¼0.02 pg m-3, respectively. Even though ß-HCH and α-HCH (60-70% of technical HCH) are both the isomers of HCHs with almost identical temporal and spatial emission patterns, these two chemicals have shown different major pathways entering the Arctic. Different from α-HCH with the long-range atmospheric transport (LRAT) as its major transport pathway, ß-HCH reached the Arctic mainly through long-range oceanic transport (LROT). The much higher tendency of ß-HCH to partition into the water, mainly due to its much lower Henry's Law Constant than α-HCH, produced an exceptionally strong pathway divergence with ß-HCH favoring slow transport in water and α-HCH favoring rapid transport in air. The concentration and burden of ß-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.
RESUMO
Time series of contaminants in the Arctic are an important instrument to detect emerging issues and to monitor the effectiveness of chemicals regulation, based on the assumption of a direct reflection of changes in primary emissions. Climate change has the potential to influence these time trends, through direct physical and chemical processes and/or changes in ecosystems. This study was part of an assessment of the Arctic Monitoring and Assessment Programme (AMAP), analysing potential links between changes in climate-related physical and biological variables and time trends of persistent organic pollutants (POPs) in Arctic biota, with some additional information from the Antarctic. Several correlative relationships were identified between POP temporal trends in freshwater and marine biota and physical climate parameters such as oscillation indices, sea-ice coverage, temperature and precipitation, although the mechanisms behind these observations remain poorly understood. Biological data indicate changes in the diet and trophic level of some species, especially seabirds and polar bears, with consequences for their POP exposure. Studies from the Antarctic highlight increased POP availability after iceberg calving. Including physical and/or biological parameters in the POP time trend analysis has led to small deviations in some declining trends, but did generally not change the overall direction of the trend. In addition, regional and temporary perturbations occurred. Effects on POP time trends appear to have been more pronounced in recent years and to show time lags, suggesting that climate-related effects on the long time series might be gaining importance.
Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Monitoramento Ambiental , Mudança Climática , Fatores de Tempo , Ecossistema , Regiões Antárticas , Regiões Árticas , Poluentes Ambientais/análise , BiotaRESUMO
To provide insight into how climate-driven diet shifts may impact contaminant exposures of Arctic species, we compared feeding ecology and contaminant concentrations in ringed seals (Pusa hispida) from two Canadian sub-Arctic (Nain at 56.5°N, Arviat at 61.1°N) and two Arctic sites (Sachs Harbour at 72.0 °N, Resolute Bay at 74.7 °N). In the sub-Arctic, empirical evidence of changing prey fish communities has been documented, while less community change has been reported in the Arctic to date, suggesting current sub-Arctic conditions may be a harbinger of future Arctic conditions. Here, Indigenous partners collected tissues from subsistence-harvested ringed seals in 2018. Blubber fatty acids (FAs) and muscle stable isotopes (δ15N, δ13C) indicated dietary patterns, while measured contaminants included heavy metals (e.g., total mercury (THg)), legacy persistent organic pollutants (e.g., dichlorodiphenyltrichloroethanes (DDTs)), polybrominated diphenyl ethers (PBDEs), and per-/polyfluoroalkyl substances (PFASs). FA signatures are distinct between sub-Arctic and Resolute Bay seals, likely related to higher consumption of southern prey species including capelin (Mallotus villosus) in the sub-Arctic but on-going feeding on Arctic species in Resolute Bay. Sachs Harbour ringed seals show FA overlap with all locations, possibly consuming both southern and endemic Arctic species. Negative δ13C estimates for PFAS models suggest that more pelagic, sub-Arctic type prey (e.g., capelin) increases PFAS concentrations, whereas the reverse occurs for, e.g., THg, ΣPBDE, and ΣDDT. Inconsistent directionality of δ15N estimates in the models likely reflects baseline isotopic variation not trophic position differences. Adjusting for the influence of diet suggests that if Arctic ringed seal diets become more like sub-Arctic seals due to climate change, diet-driven increases may occur for newer contaminants like PFASs, but not for more legacy contaminants. Nonetheless, temporal trends studies are still needed, as are investigations into the potential confounding influence of baseline isotope variation in spatial studies of contaminants in Arctic biota.
Assuntos
Fluorocarbonos , Mercúrio , Metais Pesados , Phoca , Animais , Canadá , Mudança Climática , Ácidos Graxos , Éteres Difenil Halogenados/análise , Mercúrio/análise , Poluentes Orgânicos PersistentesRESUMO
Per- and polyfluoroalkyl substances (PFASs) have been widely used since the 1940s in industry and everyday household products. They also persist in the environment and bioaccumulate in humans and wildlife. Despite these concerns, the identities of most PFASs in environmental and biological samples are unknown. Herein, we describe a novel cyclic ion mobility mass spectrometer (cIMS), hyphenated with gas chromatography (GC) atmospheric pressure chemical ionization, that can reveal the presence of unknown PFASs on the basis of the ratio of their mass and collision cross section (CCS). Prediction of the CCS of ca. 20,000 chemicals used in industry and commerce indicates that most compounds characterized by CCS values that are less than the sum of 100 Å2 and one-fifth of their mass are either PFASs or polybrominated flame retardants. When this filter is applied to GC-cIMS data collected from a set of 20 indoor dust samples, PFAS compounds are revealed without prior knowledge of their occurrence. Validation of this approach was performed using SRM 2585, a standard reference material of household dust, by comparing the PFASs detected with those (tentatively) identified in previous studies. Chlorofluoro phthalimides tentatively identified previously were confirmed with a synthesized standard. The method also reveals the presence of chlorofluoro n-alkanes as an emerging class of "forever chemicals" that contaminate the indoor environment.
Assuntos
Fluorocarbonos , Cromatografia Líquida , Poeira/análise , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de MassasRESUMO
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Assuntos
Mercúrio , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Monitoramento Ambiental , Lagos , Mamíferos , Mercúrio/análiseRESUMO
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Assuntos
Poluentes Ambientais , Poluentes Ambientais/análise , PolíticasRESUMO
This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cadeia Alimentar , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Regiões Árticas , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , ÁguaRESUMO
We measured perfluoroalkyl substances (PFAS) in proglacial rivers and along a non-glacial freshwater continuum to investigate the role of snow and ice melting in their transport and fate within the Lake Hazen watershed (82° N). PFAS concentrations in glacial rivers were higher than those in surface waters of Lake Hazen, suggesting melting glacial ice increased PFAS concentrations in the lake. Stream water derived from subsurface soils along a non-glacial (permafrost thaw and snowmelt) freshwater continuum was a source of PFAS to Lake Hazen. Lower concentrations were found downstream of a meadow wetland relative to upstream locations along the continuum, suggesting PFAS partitioning into vegetation and soil as water flowed downstream towards Lake Hazen. Our estimations indicate that total PFAS inputs from glacial rivers and snowmelt were 1.6 kg (78%) and 0.44 kg (22%), respectively, into Lake Hazen, totalling 2.04 kg, and the output of PFAS from Lake Hazen was 0.64 kg. A positive net annual change of 1.4 kg indicates PFAS had notable residence times and/or net storage in Lake Hazen.
Assuntos
Fluorocarbonos , Pergelissolo , Regiões Árticas , Monitoramento Ambiental , Fluorocarbonos/análise , LagosRESUMO
The copper-zinc smelter at Flin Flon (Manitoba) operated between 1930 and 2010 and emitted large amounts of metal(loid)s and sulphur dioxide into the atmosphere, damaging the surrounding terrestrial landscapes and depositing airborne industrial pollutants into aquatic ecosystems. However, the extent of biological impairment in regional lakes is largely unknown. Here, we analysed biological and geochemical proxies preserved in a dated sediment core from Phantom Lake, collected seven years after the smelter closed in 2010. Our objectives were to determine how smelting history affected long-term trends in (1) sedimentary elements, (2) biota across multiple trophic levels, and (3) spectrally-inferred chlorophyll a and lake-water total organic carbon. The effects of smelting activities were clearest in the diatom record, in concordance with modest responses in chironomid and cladoceran assemblages. Several metal(loid)s were naturally high and exceeded sediment quality guidelines during the pre-smelting era. With the opening of the smelter, metal(loid) concentrations in sediments increased through the 1930s, peaked in the 1960s, and declined thereafter with technological improvements but remained above background to this day. Although modest declines in inferred lake-water total organic carbon indicate reduced terrestrial carbon supply following sulphate deposition in the catchment, the diatom record showed no evidence of acidification as the lake was and remained well-buffered. Pre-smelting diatom and invertebrate assemblages were diverse and indicated oligo-mesotrophic conditions. Smelting was associated with the loss of metal-sensitive biological indicators and the emergence of assemblages dominated by metal-tolerant, generalist taxa. Diatoms tracked substantial reductions in aerial emissions since the 1990s, particularly after the smelter closed, but also indicated that the biological effects of metal pollution persist in Phantom Lake. Examining the effects of a base metal smelter on a well-buffered lake offered insights into multi-trophic level responses to severe metal contamination and potential recovery without the confounding effects of concurrent changes in lake acidity.