Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7975): 756-761, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468634

RESUMO

Van der Waals assembly enables the design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moiré superlattices1-9. This twistronics approach has resulted in numerous previously undescribed physics, including strong correlations and superconductivity in twisted bilayer graphene10-12, resonant excitons, charge ordering and Wigner crystallization in transition-metal chalcogenide moiré structures13-18 and Hofstadter's butterfly spectra and Brown-Zak quantum oscillations in graphene superlattices19-22. Moreover, twistronics has been used to modify near-surface states at the interface between van der Waals crystals23,24. Here we show that electronic states in three-dimensional (3D) crystals such as graphite can be tuned by a superlattice potential occurring at the interface with another crystal-namely, crystallographically aligned hexagonal boron nitride. This alignment results in several Lifshitz transitions and Brown-Zak oscillations arising from near-surface states, whereas, in high magnetic fields, fractal states of Hofstadter's butterfly draw deep into the bulk of graphite. Our work shows a way in which 3D spectra can be controlled using the approach of 2D twistronics.

2.
Nature ; 616(7956): 270-274, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045919

RESUMO

The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.

3.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33277256

RESUMO

In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be markedly changed by a moiré pattern induced by twist angles between different layers. This process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here, we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures. Using this technique, we fabricated heterostructures where graphene is perfectly aligned with both top and bottom encapsulating layers of hexagonal boron nitride. Our technique enables twisted 2D material systems in one single stack with dynamically tunable optical, mechanical, and electronic properties.

4.
Nat Commun ; 11(1): 5756, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188210

RESUMO

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2 V-1 s-1 and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1 K. We also found negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field.

5.
Nature ; 584(7820): 210-214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788736

RESUMO

Of the two stable forms of graphite, hexagonal and rhombohedral, the former is more common and has been studied extensively. The latter is less stable, which has so far precluded its detailed investigation, despite many theoretical predictions about the abundance of exotic interaction-induced physics1-6. Advances in van der Waals heterostructure technology7 have now allowed us to make high-quality rhombohedral graphite films up to 50 graphene layers thick and study their transport properties. Here we show that the bulk electronic states in such rhombohedral graphite are gapped8 and, at low temperatures, electron transport is dominated by surface states. Because of their proposed topological nature, the surface states are of sufficiently high quality to observe the quantum Hall effect, whereby rhombohedral graphite exhibits phase transitions between a gapless semimetallic phase and a gapped quantum spin Hall phase with giant Berry curvature. We find that an energy gap can also be opened in the surface states by breaking their inversion symmetry by applying a perpendicular electric field. Moreover, in rhombohedral graphite thinner than four nanometres, a gap is present even without an external electric field. This spontaneous gap opening shows pronounced hysteresis and other signatures characteristic of electronic phase separation, which we attribute to emergence of strongly correlated electronic surface states.

6.
BMJ Open ; 9(6): e026647, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31230008

RESUMO

OBJECTIVES: To describe the laboratory test ordering patterns by general practitioners (GPs) in Northern Ireland Western Health and Social Care Trust (WHSCT) and explore demographic and socioeconomic associations with test requesting. DESIGN: Cross-sectional study. SETTING: WHSCT, Northern Ireland. : Particip ANTS: 55 WHSCT primary care medical practices that remained open throughout the study period 1 April 2011-31 March 2016. OUTCOMES: To identify the temporal patterns of laboratory test ordering behaviour for eight commonly requested clinical biochemistry tests/test groups in WHSCT. To analyse the extent of variations in laboratory test requests by GPs and to explore whether these variations can be accounted for by clinical outcomes or geographical, demographic and socioeconomic characteristics. RESULTS: The median number of adjusted test request rates over 5 consecutive years of the study period decreased by 45.7% for urine albumin/creatinine ratio (p<0.000001) and 19.4% for lipid profiles (p<0.000001) while a 60.6%, 36.6% and 29.5% increase was observed for HbA1c (p<0.000001), immunoglobulins (p=0.000007) and prostate-specific antigen (PSA) (p=0.0003), respectively. The between-practice variation in test ordering rates increased by 272% for immunoglobulins (p=0.008) and 500% for HbA1c (p=0.0001). No statistically significant relationship between ordering activity and either demographic (age and gender) and socioeconomic factors (deprivation) or Quality and Outcome Framework scores was observed. We found the rural-urban differences in between-practice variability in ordering rates for lipid profiles, thyroid profiles, PSA and immunoglobulins to be statistically significant at the Bonferroni-adjusted significance level p<0.01. CONCLUSIONS: We explored potential factors of the interpractice variability in the use of laboratory tests and found that differences in requesting activity appear unrelated to either demographic and socioeconomic characteristics of GP practices or clinical outcome indicators.


Assuntos
Técnicas de Laboratório Clínico/estatística & dados numéricos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Clínicos Gerais , Padrões de Prática Médica/estatística & dados numéricos , Estudos Transversais , Humanos , Irlanda do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...