Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
J Med Case Rep ; 17(1): 544, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098127

RESUMO

INTRODUCTION: Pseudobulbar affect, or emotional dysregulation, commonly occurs following stroke. However, it is frequently missed in cases involving the cerebellum, resulting in a lack of treatment, which can directly impact stroke rehabilitation. CASE PRESENTATION: A 63-year-old Caucasian female with no history of mood disorders presented with gait instability, dysarthria, and right sided hemiplegia, secondary to cerebellar and pontine ischemic stroke from a basilar occlusion. She underwent endovascular therapy and her deficits gradually improved. However during recovery she began to develop uncontrollable tearfulness while retaining insight that her emotional expression was contextually inappropriate. She was treated with a selective serotonin reuptake inhibitor with reported improvements in her emotional regulation at one year follow up. CONCLUSION: This case highlights cerebellar injury as a potential cause of poorly regulated emotions, or an emotional dysmetria. The recognition of this disorder in patients with cerebellar or pontine strokes is critical, as untreated pseudobulbar affect can impact future stroke rehabilitation.


Assuntos
Ataxia Cerebelar , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Ataxia Cerebelar/complicações , Acidente Vascular Cerebral/complicações , Ponte/diagnóstico por imagem , Emoções , Cerebelo/diagnóstico por imagem
4.
Neuromuscul Disord ; 33(7): 546-550, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315422

RESUMO

Pathogenic variants in the skeletal muscle α-actin 1 gene (ACTA1) cause a spectrum of myopathies with clinical and myopathological diversity. Clinical presentations occur from the prenatal period to adulthood, commonly with proximal-predominant weakness and rarely preferential distal weakness. Myopathological findings are wide-ranging, with nemaline rods being most frequent. Associated cardiomyopathy is rare and conduction defects are not reported. We describe a family with congenital myopathy with prominent finger flexor weakness and cardiomyopathy with cardiac conduction defects. The proband, a 48-year-old Caucasian male, his 73-year-old mother, 41-year-old sister, and 19-year-old nephew presented with prominent finger flexor weakness on a background of neonatal hypotonia and delayed motor milestones. All had progressive cardiomyopathy with systolic dysfunction and/or left ventricular dilation. The proband and sister had intraventricular conduction delay and left anterior fascicular block, respectively. The mother had atrial fibrillation. Muscle biopsy in the proband and sister demonstrated congenital fiber-type disproportion and rare nemaline rods in the proband. A novel dominant variant in ACTA1 (c.81C>A, p.Asp27Glu) segregated within the family. This family expands the genotypic and phenotypic spectrum of ACTA1-related myopathy, highlighting preferential finger flexor involvement with cardiomyopathy and conduction disease. We emphasize early and ongoing cardiac surveillance in ACTA1-related myopathy.


Assuntos
Cardiomiopatias , Miopatias da Nemalina , Miopatias Congênitas Estruturais , Adulto , Idoso , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Actinas/genética , Doença do Sistema de Condução Cardíaco/complicações , Doença do Sistema de Condução Cardíaco/patologia , Cardiomiopatias/patologia , Mães , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/patologia , Miopatias Congênitas Estruturais/patologia
5.
Brain Behav Evol ; 87(2): 88-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27192984

RESUMO

Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.


Assuntos
Cerebelo/anatomia & histologia , Proteínas do Tecido Nervoso/metabolismo , Paleógnatas/anatomia & histologia , Células de Purkinje/metabolismo , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Nova Zelândia , Células de Purkinje/citologia
6.
Brain Behav Evol ; 85(2): 94-106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871652

RESUMO

Zebrin II (ZII) is a glycolytic enzyme expressed in cerebellar Purkinje cells. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with a high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). To date, ZII expression studies are limited to neognathous birds: pigeons (Columbiformes), chickens (Galliformes), and hummingbirds (Trochilidae). These previous studies divided the avian cerebellum into 5 transverse regions based on the pattern of ZII expression. In the lingular region (lobule I) all Purkinje cells are ZII+. In the anterior region (lobules II-V) there are 4 pairs of ZII+/- stripes. In the central region (lobules VI-VIII) all Purkinje cells are ZII+. In the posterior region (lobules VIII-IX) there are 5-7 pairs of ZII+/- stripes. Finally, in the nodular region (lobule X) all Purkinje cells are ZII+. As the pattern of ZII stripes is quite similar in these disparate species, it appears that it is highly conserved. However, it has yet to be studied in paleognathous birds, which split from the neognaths over 100 million years ago. To better understand the evolution of cerebellar compartmentation in birds, we examined ZII immunoreactivity in a paleognath, the Chilean tinamou (Nothoprocta perdicaria). In the tinamou, Purkinje cells expressed ZII heterogeneously such that there were sagittal ZII+ and ZII- stripes of Purkinje cells, and this pattern of expression was largely similar to that observed in neognathous birds. For example, all Purkinje cells in the lingular (lobule I) and nodular (lobule X) regions were ZII+, and there were 4 pairs of ZII+/- stripes in the anterior region (lobules II-V). In contrast to neognaths, however, ZII was expressed in lobules VI-VII as a series of sagittal stripes in the tinamou. Also unlike in neognaths, stripes were absent in lobule IXab, and all Purkinje cells expressed ZII in the tinamou. The differences in ZII expression between the tinamou and neognaths could reflect behavior, but the general similarity of the expression patterns across all bird species suggests that ZII stripes evolved early in the avian phylogenetic tree.


Assuntos
Proteínas Aviárias/genética , Evolução Biológica , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Paleógnatas/metabolismo , Animais , Expressão Gênica , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...