Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Nature ; 615(7950): 111-116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813962

RESUMO

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Assuntos
Criptocromos , Drosophila melanogaster , Campos Magnéticos , Animais , Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Triptofano/metabolismo , Eletrofisiologia , Comportamento Animal , Análise de Célula Única , Neurônios/citologia , Neurônios/metabolismo
3.
Acta Neuropathol Commun ; 8(1): 158, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894207

RESUMO

A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of repeat units in length. Repeat associated non-AUG translation of the expansion leads to the formation of toxic, pathological Dipeptide-Repeat Proteins (DPRs). To date there remains a lack of in vivo models expressing C9orf72 related DPRs with a repeat length of more than a few hundred repeats. As such our understanding of how physiologically relevant repeat length DPRs effect the nervous system in an ageing in vivo system remains limited. In this study we generated Drosophila models expressing DPRs over 1000 repeat units in length, a known pathological length in humans. Using these models, we demonstrate each DPR exhibits a unique, age-dependent, phenotypic and pathological profile. Furthermore, we show co-expression of specific DPR combinations leads to distinct, age-dependent, phenotypes not observed through expression of single DPRs. We propose these models represent a unique, in vivo, tool for dissecting the molecular mechanisms implicated in disease pathology, opening up new avenues in the study of both MND and FTD.


Assuntos
Expansão das Repetições de DNA/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Demência Frontotemporal , Doença dos Neurônios Motores , Animais , Proteína C9orf72/genética , Drosophila , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...