Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920274

RESUMO

Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced eCIRP release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5-Gy total body irradiation (TBI). Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5-Gy radiation. eCIRP-neutralizing monoclonal antibody (mAb) was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled E. coli 7 days after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine CIRP (rmCIRP). Rac1 and ARP2 protein expression in cell lysates and eCIRP levels in the peritoneal lavage were assessed by Western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared to controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after TBI. TBI significantly increased eCIRP levels in the peritoneal cavity. rmCIRP significantly decreased bacterial phagocytosis in a dose-dependent manner. eCIRP mAb restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of eCIRP restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.

2.
Front Immunol ; 15: 1411930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881891

RESUMO

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Assuntos
Células de Kupffer , Camundongos Knockout , Proteínas de Ligação a RNA , Sepse , Animais , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Sepse/imunologia , Sepse/metabolismo , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Manose , Interleucina-6/metabolismo
3.
Front Immunol ; 15: 1426682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938563

RESUMO

Background: The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods: C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results: Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion: eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.


Assuntos
Proteínas de Ligação a RNA , Sepse , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Modelos Animais de Doenças , Endotoxinas/imunologia , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sepse/imunologia , Sepse/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
4.
Cell Mol Immunol ; 21(7): 707-722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789529

RESUMO

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.


Assuntos
Homeostase , Neutrófilos , Sepse , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Sepse/imunologia , Animais , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B
5.
Front Immunol ; 15: 1362858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545102

RESUMO

Background: Cardiac arrest (CA) is a significant public health concern. There is the high imminent mortality and survival in those who are resuscitated is substantively compromised by the post-CA syndrome (PCAS), characterized by multiorgan ischemia-reperfusion injury (IRI). The inflammatory response in PCAS is complex and involves various immune cell types, including lymphocytes and myeloid cells that have been shown to exacerbate organ IRI, such as myocardial infarction. Purinergic signaling, as regulated by CD39 and CD73, has emerged as centrally important in the context of organ-specific IRI. Hence, comprehensive understanding of such purinergic responses may be likewise imperative for improving outcomes in PCAS. Methods: We have investigated alterations of immune cell populations after CA by utilizing rodent models of PCAS. Blood and spleen were collected after CA and resuscitation and underwent flow cytometry analysis to evaluate shifts in CD3+CD4+ helper T cells, CD3+CD8a+ cytotoxic T cells, and CD4/CD8a ratios. We then examined the expression of CD39 and CD73 across diverse cell types, including myeloid cells, T lymphocytes, and B lymphocytes. Results: In both rat and mouse models, there were significant increases in the frequency of CD3+CD4+ T lymphocytes in PCAS (rat, P < 0.01; mouse, P < 0.001), with consequently elevated CD4/CD8a ratios in whole blood (both, P < 0.001). Moreover, CD39 and CD73 expression on blood leukocytes were markedly increased (rat, P < 0.05; mouse, P < 0.01 at 24h). Further analysis in the experimental mouse model revealed that CD11b+ myeloid cells, with significant increase in their population (P < 0.01), had high level of CD39 (88.80 ± 2.05 %) and increased expression of CD73 (P < 0.05). CD19+ B lymphocytes showed slight increases of CD39 (P < 0.05 at 2h) and CD73 (P < 0.05 at 2h), while, CD3+ T lymphocytes had decreased levels of them. These findings suggested a distinct patterns of expression of CD39 and CD73 in these specific immune cell populations after CA. Conclusions: These data have provided comprehensive insights into the immune response after CA, highlighting high-level expressions of CD39 and CD73 in myeloid cells.


Assuntos
Parada Cardíaca , Roedores , Animais , Camundongos , Ratos , Citometria de Fluxo , Leucócitos , Linfócitos T Citotóxicos , 5'-Nucleotidase/metabolismo
6.
J Leukoc Biol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484156

RESUMO

B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and IL-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 CFU E. coli intraperitoneally (i.p.). After 4 and 20 hours, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli-sepsis mice. Importantly, replenishing B-1a cells via i.p. injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we co-cultured bone marrow-derived neutrophils (BMDNs) with peritoneal B-1a cells in a contact or non-contact condition using an insert and stimulated them with eCIRP. After 4 hours, we found that eCIRP significantly increased NET formation in BMDNs. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis and this was mediated through natural IgM, as blocking IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli-sepsis mice.

7.
Front Immunol ; 15: 1353990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333215

RESUMO

The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.


Assuntos
Síndrome Aguda da Radiação , Sepse , Humanos , Receptores de Reconhecimento de Padrão/metabolismo , Síndrome Aguda da Radiação/etiologia , Morte Celular , Sepse/metabolismo
8.
Front Immunol ; 15: 1347453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343542

RESUMO

Introduction: Various immune cell types play critical roles in sepsis with numerous distinct subsets exhibiting unique phenotypes even within the same cell population. Single-cell RNA sequencing (scRNA-seq) enables comprehensive transcriptome profiling and unbiased cell classification. In this study, we have unveiled the transcriptomic landscape of immune cells in sepsis through scRNA-seq analysis. Methods: We induced sepsis in mice by cecal ligation and puncture. 20 h after the surgery, the spleen and peritoneal lavage were collected. Single-cell suspensions were processed using a 10× Genomics pipeline and sequenced on an Illumina platform. Count matrices were generated using the Cell Ranger pipeline, which maps reads to the mouse reference transcriptome, GRCm38/mm10. Subsequent scRNA-seq analysis was performed using the R package Seurat. Results: After quality control, we subjected the entire data set to unsupervised classification. Four major clusters were identified as neutrophils, macrophages, B cells, and T cells according to their putative markers. Based on the differentially expressed genes, we identified activated pathways in sepsis for each cell type. In neutrophils, pathways related to inflammatory signaling, such as NF-κB and responses to pathogen-associated molecular patterns (PAMPs), cytokines, and hypoxia were activated. In macrophages, activated pathways were the ones related to cell aging, inflammatory signaling, and responses to PAMPs. In B cells, pathways related to endoplasmic reticulum stress were activated. In T cells, activated pathways were the ones related to inflammatory signaling, responses to PAMPs, and acute lung injury. Next, we further classified each cell type into subsets. Neutrophils consisted of four clusters. Some subsets were activated in inflammatory signaling or cell metabolism, whereas others possessed immunoregulatory or aging properties. Macrophages consisted of four clusters, namely, the ones with enhanced aging, lymphocyte activation, extracellular matrix organization, or cytokine activity. B cells consisted of four clusters, including the ones possessing the phenotype of cell maturation or aging. T cells consisted of six clusters, whose phenotypes include molecular translocation or cell activation. Conclusions: Transcriptomic analysis by scRNA-seq has unveiled a comprehensive spectrum of immune cell responses and distinct subsets in the context of sepsis. These findings are poised to enhance our understanding of sepsis pathophysiology, offering avenues for targeting novel molecules, cells, and pathways to combat infectious diseases.


Assuntos
Moléculas com Motivos Associados a Patógenos , Sepse , Camundongos , Animais , Perfilação da Expressão Gênica , Transcriptoma , Citocinas/metabolismo
9.
Surgery ; 175(5): 1346-1351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342730

RESUMO

BACKGROUND: Gut ischemia/reperfusion causes the release of damage-associated molecular patterns, leading to acute lung injury and high mortality. Cold-inducible ribonucleic acid-binding protein is a ribonucleic acid chaperon that binds the polyadenylation tail of messenger ribonucleic acid intracellularly. Upon cell stress, cold-inducible ribonucleic acid-binding protein is released, and extracellular cold-inducible ribonucleic acid-binding protein acts as a damage-associated molecular pattern, worsening inflammation. To inhibit extracellular cold-inducible ribonucleic acid-binding protein, we have recently developed an engineered polyadenylation tail named A12. Here, we sought to investigate the therapeutic potential of A12 in gut ischemia/reperfusion-induced acute lung injury. METHODS: Male C57BL6/J mice underwent superior mesenteric artery occlusion and were treated with intraperitoneal A12 (0.5 nmol/g body weight) or vehicle at the time of reperfusion. Blood and lungs were collected 4 hours after gut ischemia/reperfusion. Systemic levels of extracellular cold-inducible ribonucleic acid-binding protein, interleukin-6, aspartate transaminase, alanine transaminase, and lactate dehydrogenase were determined. The pulmonary gene expression of cytokines (interleukin-6, interleukin-1ß) and chemokines (macrophage-inflammatory protein-2, keratinocyte-derived chemokine) was also assessed. In addition, lung myeloperoxidase, injury score, and cell death were determined. Mice were monitored for 48 hours after gut ischemia/reperfusion for survival assessment. RESULTS: Gut ischemia/reperfusion significantly increased the serum extracellular cold-inducible ribonucleic acid-binding protein levels. A12 treatment markedly reduced the elevated serum interleukin-6, alanine transaminase, aspartate transaminase, and lactate dehydrogenase by 53%, 23%, 23%, and 24%, respectively, in gut ischemia/reperfusion mice. A12 also significantly decreased cytokine and chemokine messenger ribonucleic acids and myeloperoxidase activity in the lungs of gut ischemia/reperfusion mice. Histological analysis revealed that A12 attenuated tissue injury and cell death in the lungs of gut ischemia/reperfusion mice. Finally, administration of A12 markedly improved the survival of gut ischemia/reperfusion mice. CONCLUSION: A12, a novel extracellular cold-inducible ribonucleic acid-binding protein inhibitor, diminishes inflammation and mitigates acute lung injury when employed as a treatment during gut ischemia/reperfusion. Hence, the targeted approach toward extracellular cold-inducible ribonucleic acid-binding protein emerges as a promising therapeutic strategy for alleviating gut ischemia/reperfusion-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Interleucina-6/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Pulmão/metabolismo , Isquemia/metabolismo , Reperfusão/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , RNA/uso terapêutico , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Peroxidase/metabolismo , Lactato Desidrogenases/metabolismo
10.
Mol Med ; 30(1): 17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302880

RESUMO

BACKGROUND: In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS: We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS: We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION: In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.


Assuntos
Linfócitos Intraepiteliais , Sepse , Animais , Camundongos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
11.
Shock ; 60(3): 450-460, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548626

RESUMO

ABSTRACT: Background: Sepsis reduces neutrophil apoptosis. As the result, neutrophils may become aged, exacerbating inflammation and tissue injury. Extracellular cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern to promote inflammation and tissue injury in sepsis. SerpinB2, a serine protease inhibitor, has been shown to inhibit apoptosis. We hypothesize that eCIRP upregulates SerpinB2 to promote aged neutrophil subset by inhibiting apoptosis in sepsis. Methods: We stimulated bone marrow-derived neutrophils (BMDNs) of wild-type (WT) mice with 1 µg/mL of recombinant mouse CIRP (i.e., eCIRP) and assessed cleaved caspase-3 and SerpinB2 by western blotting. Apoptotic neutrophils were assessed by Annexin V/PI. Bone marrow-derived neutrophils were stimulated with 1 µg/mL eCIRP and treated with or without PAC-1 (caspase-3 activator) and aged neutrophils (CXCR4 hi CD62L lo ) were assessed by flow cytometry. To induce sepsis, we performed cecal ligation and puncture in WT or CIRP -/- mice. We determined the percentage of aged neutrophils and SerpinB2 + neutrophils in blood and spleen by flow cytometry. Results: We found that cleaved caspase-3 levels were increased at 4 h of PBS treatment compared with 0 h but decreased by eCIRP treatment. Extracellular cold-inducible RNA-binding protein reduced apoptotic cells after 20 h of treatment. Extracellular cold-inducible RNA-binding protein also increased the frequencies of aged neutrophils compared with PBS after 20 h, while PAC-1 treatment reduced aging in eCIRP-treated BMDNs. Extracellular cold-inducible RNA-binding protein significantly increased the expression of SerpinB2 at protein levels in BMDNs at 20 h. In WT mice, the frequencies of aged and SerpinB2 + neutrophils in blood and spleen were increased after 20 h of cecal ligation and puncture, while in CIRP -/- mice, aged and SerpinB2 + neutrophils were significantly decreased compared with WT mice. We also found that aged neutrophils expressed significantly higher levels of SerpinB2 compared with non-aged neutrophils. Conclusions: eCIRP inhibits neutrophil apoptosis to increase aged phenotype by increasing SerpinB2 expression in sepsis. Thus, targeting eCIRP could be a new therapeutic strategy to ameliorate inflammation caused by neutrophil aging in sepsis.


Assuntos
Neutrófilos , Sepse , Camundongos , Animais , Neutrófilos/metabolismo , Pulmão/metabolismo , Caspase 3/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Apoptose , Proteínas de Ligação a RNA/metabolismo , Camundongos Endogâmicos C57BL
12.
J Immunol ; 211(7): 1144-1153, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585248

RESUMO

Sepsis is an infectious inflammatory disease that often results in acute lung injury (ALI). Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA chaperon that binds to mRNA's poly(A) tail. However, CIRP can be released in sepsis, and extracellular CIRP (eCIRP) is a damage-associated molecular pattern, exaggerating inflammation, ALI, and mortality. In this study, we developed an engineered poly(A) mRNA mimic, AAAAAAAAAAAA, named A12, with 2'-O-methyl ribose modification and terminal phosphorothioate linkages to protect it from RNase degradation, exhibiting an increased half-life. A12 selectively and strongly interacted with the RNA-binding motif of eCIRP, thereby preventing eCIRP's binding to its receptor, TLR4. In vitro treatment with A12 significantly decreased eCIRP-induced macrophage MAPK and NF-κB activation and inflammatory transcription factor upregulation. A12 also attenuated proinflammatory cytokine production induced by eCIRP in vitro and in vivo in macrophages and mice, respectively. We revealed that treating cecal ligation and puncture-induced sepsis with A12 significantly reduced serum organ injury markers and cytokine levels and ALI, and it decreased bacterial loads in the blood and peritoneal fluid, ultimately improving their survival. Thus, A12's ability to attenuate the clinical models of sepsis sheds lights on inflammatory disease pathophysiology and prevention of the disease progress.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Sepse/metabolismo , Lesão Pulmonar Aguda/genética , Inflamação , Citocinas , Transdução de Sinais
13.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463445

RESUMO

Extracellular cold-inducible RNA-binding protein (eCIRP) is a key mediator of severity and mortality in sepsis. We found that stimulation of mouse bone marrow-derived neutrophils (BMDNs) with eCIRP generated a distinct neutrophil subpopulation, characterized by cell surface markers of both antigen-presenting cells and aged neutrophils as well as expression of IL-12, which we named antigen-presenting aged neutrophils (APANs). The frequency of APANs was significantly increased in the blood, spleen, and lungs of WT mice subjected to cecal ligation and puncture-induced sepsis but not in CIRP-/- mice. Patients with sepsis had a significant increase in circulating APAN counts compared with healthy individuals. Compared with non-APAN-transfered mice, APAN-transferred septic mice had increased serum levels of injury and inflammatory markers, exacerbated acute lung injury (ALI), and worsened survival. APANs and CD4+ T cells colocalized in the spleen, suggesting an immune interaction between these cells. APANs cocultured with CD4+ T cells significantly induced the release of IFN-γ via IL-12. BMDNs stimulated with eCIRP and IFN-γ underwent hyper-NETosis. Stimulating human peripheral blood neutrophils with eCIRP also induced APANs, and stimulating human neutrophils with eCIRP and IFN-γ caused hyper-NETosis. Thus, eCIRP released during sepsis induced APANs to aggravate ALI and worsen the survival of septic animals via CD4+ T cell activation, Th1 polarization, and IFN-γ-mediated hyper-NETosis.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Camundongos , Animais , Idoso , Neutrófilos , Linfócitos T CD4-Positivos/metabolismo , Inflamação/metabolismo , Interleucina-12/genética , Camundongos Endogâmicos C57BL
14.
Front Immunol ; 14: 1151250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168858

RESUMO

Introduction: Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods: RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results: The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion: Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.


Assuntos
Macrófagos , Lesões por Radiação , Animais , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
15.
BMC Med ; 21(1): 56, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922820

RESUMO

BACKGROUND: Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS: This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS: The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS: MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Ratos , Animais , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Mitocôndrias , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Modelos Animais de Doenças
16.
Shock ; 59(2): 239-246, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512674

RESUMO

ABSTRACT: Sepsis is a severe inflammatory disease syndrome caused by the dysregulated host response to infection. Neutrophils act as the first line of defense against pathogens by releasing effector molecules such as reactive oxygen species, myeloperoxidase, and neutrophil extracellular traps. However, uncontrolled activation of neutrophils and extensive release of effector molecules often cause a "friendly fire" to damage organ systems. Although neutrophils are considered a short-lived, terminally differentiated homogeneous population, recent studies have revealed its heterogeneity comprising different subsets or states implicated in sepsis pathophysiology. Besides the well-known N1 and N2 subsets of neutrophils, several new subsets including aged, antigen-presenting, reverse-migrated, intercellular adhesion molecule-1 + , low-density, olfactomedin 4 + , and Siglec-F + neutrophils have been reported. These neutrophils potentially contribute to the pathogenesis of sepsis based on their proinflammatory and immunosuppressive functions. Damage-associated molecular patterns (DAMPs) are endogenous molecules to induce inflammation by stimulating pattern recognition receptors on immune cells. Different kinds of DAMPs have been shown to contribute to sepsis pathophysiology, including extracellular cold-inducible RNA-binding protein, high-mobility group box 1, extracellular histones, and heat shock proteins. In this review, we summarize the different subsets of neutrophils and their association with sepsis and discuss the novel roles of DAMPs on neutrophil heterogeneity.


Assuntos
Alarminas , Neutrófilos , Sepse , Idoso , Humanos , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo
17.
J Immunol ; 210(3): 310-321, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480269

RESUMO

Neutrophil heterogeneity represents different subtypes, states, phenotypes, and functionality of neutrophils implicated in sepsis pathobiology. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that promotes inflammation and alters neutrophil phenotype and function through TLR4. Nectin-2 or CD112 is an Ig-like superfamily member. CD112 serves as the ligand for DNAM-1 (CD226), which induces Th1 differentiation in naive CD4+ T cells. Th1 cells produce IFN-γ to fuel inflammation. CD112 is expressed mainly on APCs, but its expression in neutrophils is unknown. We hypothesize that eCIRP induces CD112 expression in neutrophils, promoting Th1 differentiation in sepsis. Incubation of neutrophils with recombinant murine (rm)CIRP significantly increased the gene and protein expression of CD112 in neutrophils. Anti-TLR4 Ab-treated neutrophils significantly decreased CD112+ neutrophils compared with controls upon rmCIRP stimulation. After 4 h of rmCIRP injection in mice, CD112+ neutrophils were significantly increased in the blood and spleen. At 20 h after cecal ligation and puncture-induced sepsis, CD112+ neutrophils were also significantly increased. Blood and splenic CD112+ neutrophils in septic CIRP-/- mice were much lower than in septic wild-type mice. Coculture of naive CD4 T cells with rmCIRP-treated (CD112+) neutrophils significantly increased IFN-γ-producing Th1 cells compared with coculture with PBS-treated neutrophils. CD112 Ab significantly attenuated Th1 differentiation induced by rmCIRP-treated neutrophils. Thus, eCIRP increases CD112 expression in neutrophils via TLR4 to promote Th1 differentiation in sepsis. Targeting eCIRP may attenuate sepsis by reducing Th1-promoting CD112+ neutrophils.


Assuntos
Neutrófilos , Sepse , Camundongos , Animais , Neutrófilos/metabolismo , Nectinas/metabolismo , Inflamação/metabolismo , Proteínas Recombinantes/metabolismo , Sepse/metabolismo , Camundongos Endogâmicos C57BL
18.
Cell Mol Immunol ; 20(1): 80-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471113

RESUMO

In sepsis, macrophage bacterial phagocytosis is impaired, but the mechanism is not well elucidated. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that causes inflammation. However, whether eCIRP regulates macrophage bacterial phagocytosis is unknown. Here, we reported that the bacterial loads in the blood and peritoneal fluid were decreased in CIRP-/- mice and anti-eCIRP Ab-treated mice after sepsis. Increased eCIRP levels were correlated with decreased bacterial clearance in septic mice. CIRP-/- mice showed a marked increase in survival after sepsis. Recombinant murine CIRP (rmCIRP) significantly decreased the phagocytosis of bacteria by macrophages in vivo and in vitro. rmCIRP decreased the protein expression of actin-binding proteins, ARP2, and p-cofilin in macrophages. rmCIRP significantly downregulated the protein expression of ßPIX, a Rac1 activator. We further demonstrated that STAT3 and ßPIX formed a complex following rmCIRP treatment, preventing ßPIX from activating Rac1. We also found that eCIRP-induced STAT3 phosphorylation was required for eCIRP's action in actin remodeling. Inhibition of STAT3 phosphorylation prevented the formation of the STAT3-ßPIX complex, restoring ARP2 and p-cofilin expression and membrane protrusion in rmCIRP-treated macrophages. The STAT3 inhibitor stattic rescued the macrophage phagocytic dysfunction induced by rmCIRP. Thus, we identified a novel mechanism of macrophage phagocytic dysfunction caused by eCIRP, which provides a new therapeutic target to ameliorate sepsis.


Assuntos
Fagocitose , Sepse , Camundongos , Animais , Macrófagos/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL
19.
J Inflamm Res ; 15: 4047-4059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873387

RESUMO

Introduction: Extracellular cold-inducible RNA-binding protein (eCIRP) is an endogenous pro-inflammatory mediator that exacerbates injury in inflammation and sepsis. The mechanisms in which eCIRP is released have yet to be fully explored. Necroptosis is a programmed cell death that is dependent on the activation of mixed lineage kinase domain-like pseudo kinase (MLKL) which causes the release of damage-associated molecular patterns. We hypothesize that eCIRP is released through necroptosis and intensifies inflammation in sepsis. Methods: RAW264.7 cells were treated with pan-caspase inhibitor z-VAD (15 µM) 1 h before stimulation with LPS (1 µg/mL). Necroptosis inhibitor, Necrostatin-1 (Nec-1) (10 µM) was added to the cells with LPS simultaneously. After 24 h of LPS stimulation, cytotoxicity was determined by LDH assay. eCIRP levels in the culture supernatants and phospho-MLKL (p-MLKL) from cell lysates were assessed by Western blot. p-MLKL interaction with the cell membrane was visualized by immunofluorescence. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Mice were treated with Nec-1 (1 mg/kg) or DMSO. 20 h post-surgery, serum and peritoneal fluid levels of eCIRP, TNF-α and IL-6 were determined by ELISA. H&E staining of lung tissue sections was performed. Results: We found that in RAW264.7 cells, LPS+z-VAD induces necroptosis as evidenced by an increase in p-MLKL levels and causes eCIRP release. Nec-1 reduces both p-MLKL activation and eCIRP release in LPS+z-VAD-treated RAW264.7 cells. Nec-1 also inhibits the release of eCIRP, TNF-α and IL-6 in the serum and peritoneal fluid in CLP-induced septic mice. We predicted a transient interaction between eCIRP and MLKL using a computational model, suggesting that eCIRP may exit the cell via the pores formed by p-MLKL. Conclusion: Necroptosis is a novel mechanism of eCIRP release in sepsis. Targeting necroptosis may ameliorate inflammation and injury in sepsis by inhibiting eCIRP release.

20.
Front Immunol ; 13: 903859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844517

RESUMO

Sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP) that promotes inflammation and induces cell death via apoptosis, NETosis, and/or pyroptosis. Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxide on cellular membranes. We hypothesize that eCIRP induces ferroptosis in macrophages and lung tissue during sepsis. RAW 264.7 cells stimulated with recombinant murine (rm) CIRP significantly decreased the expression of glutathione peroxidase 4 (GPX4), a negative regulator of ferroptosis, and increased lipid reactive oxygen species (ROS) in a TLR4 dependent manner. In TLR4-/- peritoneal macrophages, depression of GPX4 expression and increase in lipid ROS levels were attenuated after rmCIRP-treatment compared to WT macrophages. rmCIRP also induced cell death in RAW 264.7 cells which was corrected by the ferroptosis inhibitor, ferrostatin-1 (Fer-1). Intraperitoneal injection of rmCIRP decreased GPX4 expression and increased lipid ROS in lung tissue, whereas the increase of lipid ROS was reduced by Fer-1 treatment. GPX4 expression was significantly decreased, while malondialdehyde (MDA), iron levels, and injury scores were significantly increased in lungs of WT mice after cecal ligation and puncture (CLP)-induced sepsis compared to CIRP-/- mice. Treatment with C23, a specific eCIRP inhibitor, in CLP mice alleviated the decrease in GPX4 and increase in MDA levels of lung tissue. These findings suggest that eCIRP induces ferroptosis in septic lungs by decreasing GPX4 and increasing lipid ROS. Therefore, regulation of ferroptosis by targeting eCIRP may provide a new therapeutic approach in sepsis and other inflammatory diseases.


Assuntos
Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas de Ligação a RNA , Sepse , Animais , Metabolismo dos Lipídeos , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células RAW 264.7 , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...