Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2301394120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399390

RESUMO

Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Variação de Fase , Genômica , Adaptação Fisiológica/genética , Virulência/genética , Filogenia , Genoma Bacteriano
2.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380903

RESUMO

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Assuntos
Antituberculosos , Carbono , Parede Celular , Interações Medicamentosas , Interação Gene-Ambiente , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Carbono/metabolismo , Parede Celular/ultraestrutura , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura
3.
Elife ; 112022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112666

RESUMO

The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen's ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen's genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Variação Genética , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Mycobacterium tuberculosis/patogenicidade , Fenótipo
4.
Methods Mol Biol ; 2314: 301-321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235660

RESUMO

Phage recombination systems have been instrumental in the development of gene modification technologies for bacterial pathogens. In particular, the Che9 phage RecET system has been used successfully for over 10 years for making gene knockouts and fusions in Mycobacterium tuberculosis. This "recombineering" technology typically uses linear dsDNA substrates that contain a drug-resistance marker flanked by (up to) 500 base pairs of DNA homologous to the target site. Less often employed in mycobacterial recombineering is the use of oligonucleotides, which require only the action of the RecT annealase to align oligos to ssDNA regions of the replication fork, for subsequent incorporation into the chromosome. Despite the higher frequency of such events relative to dsDNA-promoted recombineering, oligo-mediated changes generally suffer from the disadvantage of not being selectable, thus making them harder to isolate. This chapter discusses steps and methodologies that increase the frequencies of finding oligo-mediated events, including the transfer of single nucleotide polymorphisms (SNPs) to mycobacterial chromosomes, and the use of oligos in conjunction with the mycobacterial phage Bxb1 site-specific recombination system for the easy generation of knockouts, insertion, and fusions, in a protocol known as ORBIT.


Assuntos
Deleção de Genes , Fusão Gênica , Mutagênese Insercional , Mycobacterium tuberculosis/genética , Oligonucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Cromossomos Bacterianos , Edição de Genes , Engenharia Genética , Genoma Bacteriano
5.
PLoS Pathog ; 16(10): e1009000, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075106

RESUMO

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this "decoy hypothesis". Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Animais , Antígenos de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
6.
Elife ; 82019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31886769

RESUMO

The ESX (or Type VII) secretion systems are protein export systems in mycobacteria and many Gram-positive bacteria that mediate a broad range of functions including virulence, conjugation, and metabolic regulation. These systems translocate folded dimers of WXG100-superfamily protein substrates across the cytoplasmic membrane. We report the cryo-electron microscopy structure of an ESX-3 system, purified using an epitope tag inserted with recombineering into the chromosome of the model organism Mycobacterium smegmatis. The structure reveals a stacked architecture that extends above and below the inner membrane of the bacterium. The ESX-3 protomer complex is assembled from a single copy of the EccB3, EccC3, and EccE3 and two copies of the EccD3 protein. In the structure, the protomers form a stable dimer that is consistent with assembly into a larger oligomer. The ESX-3 structure provides a framework for further study of these important bacterial transporters.


Assuntos
Proteínas de Bactérias/química , Mycobacterium smegmatis/química , Transporte Proteico/genética , Sistemas de Secreção Tipo VII/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cromossomos/química , Cromossomos/genética , Epitopos/química , Epitopos/genética , Mycobacterium smegmatis/ultraestrutura , Óperon/genética , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/ultraestrutura
7.
Nature ; 571(7763): 72-78, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217586

RESUMO

New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.


Assuntos
Antituberculosos/classificação , Antituberculosos/isolamento & purificação , Descoberta de Drogas/métodos , Deleção de Genes , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Antituberculosos/farmacologia , DNA Girase/metabolismo , Resistência Microbiana a Medicamentos , Ácido Fólico/biossíntese , Terapia de Alvo Molecular , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/classificação , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Especificidade por Substrato , Inibidores da Topoisomerase II/isolamento & purificação , Inibidores da Topoisomerase II/farmacologia , Triptofano/biossíntese , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
8.
mBio ; 9(6)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538179

RESUMO

Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic "targeting oligonucleotide" is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annealase. This oligonucleotide contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a "payload plasmid" that contains a cognate recombination site and a selectable marker. The targeting oligonucleotide and payload plasmid are cotransformed into a RecT- and Int-expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate gene knockouts, promoter replacements, or C-terminal tags. This new system is called ORBIT (for "oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting") and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions, or fusions in a bacterial chromosome. We demonstrate the utility of this "drag and drop" strategy by the construction of insertions or deletions in over 100 genes in Mycobacteriumtuberculosis and M. smegmatisIMPORTANCE We sought to develop a system that could increase the usefulness of oligonucleotide-mediated recombineering of bacterial chromosomes by expanding the types of modifications generated by an oligonucleotide (i.e., insertions and deletions) and by making recombinant formation a selectable event. This paper describes such a system for use in M. smegmatis and M. tuberculosis By incorporating a single-stranded DNA (ssDNA) version of the phage Bxb1 attP site into the oligonucleotide and coelectroporating it with a nonreplicative plasmid that carries an attB site and a drug selection marker, we show both formation of a chromosomal attP site and integration of the plasmid in a single transformation. No target-specific dsDNA substrates are required. This system will allow investigators studying mycobacterial diseases, including tuberculosis, to easily generate multiple mutants for analysis of virulence factors, identification of new drug targets, and development of new vaccines.


Assuntos
Cromossomos Bacterianos , Edição de Genes/métodos , Genética Microbiana/métodos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Vetores Genéticos , Plasmídeos , Recombinação Genética
9.
J Biol Chem ; 291(44): 22961-22969, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27601474

RESUMO

Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site.


Assuntos
Mycobacterium tuberculosis/enzimologia , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Tuberculose/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Tuberculose/microbiologia
10.
Proc Natl Acad Sci U S A ; 113(31): E4523-30, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432954

RESUMO

The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-ß-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/metabolismo , Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzimidazóis/química , Benzimidazóis/metabolismo , Regulação Bacteriana da Expressão Gênica , Metilação , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/metabolismo
11.
EcoSal Plus ; 7(1)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27223821

RESUMO

The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.


Assuntos
Bacteriófago lambda/genética , Engenharia Genética , Recombinação Genética , Bacteriófago lambda/metabolismo , Cromossomos , Replicação do DNA , DNA Bacteriano , Escherichia coli/genética , Escherichia coli/virologia , Genômica , Plasmídeos
12.
Cell Host Microbe ; 17(6): 829-37, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26067605

RESUMO

M. tuberculosis (Mtb) survives a hostile environment within the host that is shaped in part by oxidative stress. The mechanisms used by Mtb to resist these stresses remain ill-defined because the complex combination of oxidants generated by host immunity is difficult to accurately recapitulate in vitro. We performed a genome-wide genetic interaction screen to comprehensively delineate oxidative stress resistance pathways necessary for Mtb to resist oxidation during infection. Our analysis predicted functional relationships between the superoxide-detoxifying enzyme (SodA), an integral membrane protein (DoxX), and a predicted thiol-oxidoreductase (SseA). Consistent with that, SodA, DoxX, and SseA form a membrane-associated oxidoreductase complex (MRC) that physically links radical detoxification with cytosolic thiol homeostasis. Loss of any MRC component correlated with defective recycling of mycothiol and accumulation of cellular oxidative damage. This previously uncharacterized coordination between oxygen radical detoxification and thiol homeostasis is required to overcome the oxidative environment Mtb encounters in the host.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tuberculose/microbiologia
13.
Methods Mol Biol ; 1285: 177-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779316

RESUMO

The precise knockout or modification of Mycobacterium tuberculosis genes has been critical for the identification of functions important for the growth and pathogenicity of this important bacterium. Schemes have been previously described, using both non-replicating vectors and transducing particles, for the introduction of gene knockout substrates into M. tuberculosis, where the endogenous recombination systems of the host (both homologous and illegitimate) compete for transfer of the modified allele to the chromosome. Recombineering technologies, first introduced in laboratory and pathogenic strains of Escherichia coli over the last 16 years, have been developed for use in M. tuberculosis. Described in this chapter is the use of the mycobacterial Che9c phage RecET recombination system, which has been used to make gene knockouts, reporter fusions, promoter replacements, and single base pair modifications within the M. tuberculosis and M. smegmatis chromosomes at very high frequency. Higher success rates, in a shorter period of time, are routinely observed when recombineering is compared to previously described M. tuberculosis gene knockout protocols.


Assuntos
DNA Recombinante , Engenharia Genética , Mycobacterium/genética , Alelos , Eletroporação/métodos , Engenharia Genética/métodos , Recombinação Homóloga , Mutação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética
14.
Proc Natl Acad Sci U S A ; 111(31): E3243-51, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049412

RESUMO

Mycobacteria are surrounded by a complex multilayered envelope and elongate at the poles. The principles that organize the coordinated addition of chemically diverse cell wall layers during polar extension remain unclear. We show that enzymes mediating the terminal cytosolic steps of peptidoglycan, arabinogalactan, and mycolic acid synthesis colocalize at sites of cell growth or division. The tropomyosin-like protein, DivIVA, is targeted to the negative curvature of the pole, is enriched at the growing end, and determines cell shape from this site. In contrast, cell wall synthetic complexes are concentrated at a distinct subpolar location. When viewed at subdiffraction resolution, new peptidoglycan is deposited at this subpolar site, and inert cell wall covers the DivIVA-marked tip. The differentiation between polar tip and cell wall synthetic complexes is also apparent at the biochemical level. Enzymes that generate mycolate precursors interact with DivIVA, but the final condensation of mycolic acids occurs in a distinct protein complex at the site of nascent cell wall addition. We propose an ultrastructural model of mycobacterial polar growth where new cell wall is added in an annular zone below the cell tip. This model may be broadly applicable to other bacterial and fungal organisms that grow via polar extension.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Parede Celular/metabolismo , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Ácidos Micólicos/metabolismo , Ligação Proteica
15.
Mutat Res ; 759: 1-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24361397

RESUMO

The spontaneous incidence of chloramphenicol (Cam) resistant mutant bacteria is at least ten-fold higher in cultures of enterohemorrhagic Escherichia coli O157:H7 strain EDL933 than in E. coli K-12. It is at least 100-fold higher in the dam (DNA adenine methyltransferase) derivative of EDL933, compared to the dam strain of E. coli K-12, thereby preventing the use of Cam resistance as a marker in gene replacement technology. Genome sequencing of Cam-resistant isolates of EDL933 and its dam derivatives showed that the marR (multiple antibiotic resistance) gene was mutated in every case but not in the Cam-sensitive parental strains. As expected from mutation in the marR gene, the Cam-resistant bacteria were also found to be resistant to tetracycline and nalidixic acid. The marR gene in strain EDL933 is annotated as a shorter open reading frame than that in E. coli K-12 but the longer marR(+) open reading frame was more efficient at complementing the marR antibiotic-resistance phenotype of strain EDL933. Beta-lactamase-tolerant derivatives were present at frequencies 10-100 times greater in cultures of marR derivatives of strain EDL933 than the parent strain. Spontaneous mutation frequency to rifampicin, spectinomycin and streptomycin resistance was the same in E. coli O157:H7 and E. coli K-12 strains.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli O157/efeitos dos fármacos , Carbenicilina/farmacologia , Cloranfenicol/farmacologia , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Mutação , Proteínas Repressoras/genética
16.
PLoS One ; 8(9): e75245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086479

RESUMO

Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/fisiologia , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/química , Policetídeo Sintases/genética , Análise de Sequência de DNA/métodos
17.
BMC Mol Biol ; 13: 26, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22873401

RESUMO

BACKGROUND: The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. RESULTS: In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. CONCLUSION: The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12-16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.


Assuntos
Éxons/genética , Regulação da Expressão Gênica/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Proteínas/genética , Proteínas/metabolismo , Primers do DNA/genética , Escherichia coli , Biblioteca Gênica , Humanos , Proteínas Mitocondriais , Mutagênese , Plasmídeos/genética
18.
Adv Virus Res ; 83: 367-414, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22748814

RESUMO

The homologous recombination systems of linear double-stranded (ds)DNA bacteriophages are required for the generation of genetic diversity, the repair of dsDNA breaks, and the formation of concatemeric chromosomes, the immediate precursor to packaging. These systems have been studied for decades as a means to understand the basic principles of homologous recombination. From the beginning, it was recognized that these recombinases are linked intimately to the mechanisms of phage DNA replication. In the last decade, however, investigators have exploited these recombination systems as tools for genetic engineering of bacterial chromosomes, bacterial artificial chromosomes, and plasmids. This recombinational engineering technology has been termed "recombineering" and offers a new paradigm for the genetic manipulation of bacterial chromosomes, which is far more efficient than the classical use of nonreplicating integration vectors for gene replacement. The phage λ Red recombination system, in particular, has been used to construct gene replacements, deletions, insertions, inversions, duplications, and single base pair changes in the Escherichia coli chromosome. This chapter discusses the components of the recombination systems of λ, rac prophage, and phage P22 and properties of single-stranded DNA annealing proteins from these and other phage that have been instrumental for the development of this technology. The types of genetic manipulations that can be made are described, along with proposed mechanisms for both double-stranded DNA- and oligonucleotide-mediated recombineering events. Finally, the impact of this technology to such diverse fields as bacterial pathogenesis, metabolic engineering, and mouse genomics is discussed.


Assuntos
Colífagos/enzimologia , Engenharia Genética/métodos , Genética Microbiana/métodos , Recombinases/metabolismo , Recombinação Genética , Cromossomos Bacterianos , Plasmídeos
19.
Mol Microbiol ; 83(1): 208-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22111928

RESUMO

This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.


Assuntos
Sistemas de Secreção Bacterianos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Animais , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prófagos/fisiologia , Ovinos
20.
Front Microbiol ; 2: 226, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102844

RESUMO

Upon intestinal colonization, enterohemorrhagic Escherichia coli (EHEC) induces epithelial cells to generate actin "pedestals" beneath bound bacteria, lesions that promote colonization. To induce pedestals, EHEC utilizes a type III secretion system to translocate into the mammalian cell bacterial effectors such as translocated intimin receptor (Tir), which localizes in the mammalian cell membrane and functions as a receptor for the bacterial outer membrane protein intimin. Whereas EHEC triggers efficient pedestal formation during mammalian infection, EHEC cultured in vitro induces pedestals on cell monolayers with relatively low efficiency. To determine whether growth within the mammalian host enhances EHEC pedestal formation, we compared in vitro-cultivated bacteria with EHEC directly isolated from infected piglets. Mammalian adaptation by EHEC was associated with a dramatic increase in the efficiency of cell attachment and pedestal formation. The amounts of intimin and Tir were significantly higher in host-adapted than in in vitro-cultivated bacteria, but increasing intimin or Tir expression, or artificially increasing the level of bacterial attachment to mammalian cells, did not enhance pedestal formation by in vitro-cultivated EHEC. Instead, a functional assay suggested that host-adapted EHEC translocate Tir much more efficiently than does in vitro-cultivated bacteria. These data suggest that adaptation of EHEC to the mammalian intestine enhances bacterial cell attachment, expression of intimin and Tir, and translocation of effectors that promote actin signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...