Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582452

RESUMO

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Histidina Quinase , Domínios Proteicos , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Modelos Moleculares , Transdução de Sinais , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética
2.
Appl Environ Microbiol ; 89(4): e0001523, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36920190

RESUMO

Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Condensados Biomoleculares , Oxirredução , RNA Helicases DEAD-box/metabolismo , RNA/metabolismo , Organelas/metabolismo
3.
Int J Parasitol ; 52(11): 733-744, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35447149

RESUMO

Malaria is a major global health problem which predominantly afflicts developing countries. Although many antimalarial therapies are currently available, the protozoan parasite causing this disease, Plasmodium spp., continues to evade eradication efforts. One biological phenomenon hampering eradication efforts is the parasite's ability to arrest development, transform into a drug-insensitive form, and then resume growth post-therapy. Currently, the mechanisms by which the parasite enters arrested development, or dormancy, and later recrudesces or reactivates to continue development, are unknown and the malaria field lacks techniques to study these elusive mechanisms. Since Plasmodium spp. salvage purines for DNA synthesis, we hypothesised that alkyne-containing purine nucleosides could be used to develop a DNA synthesis marker which could be used to investigate mechanisms behind dormancy. Using copper-catalysed click chemistry methods, we observe incorporation of alkyne modified adenosine, inosine, and hypoxanthine in actively replicating asexual blood stages of Plasmodium falciparum and incorporation of modified adenosine in actively replicating liver stage schizonts of Plasmodium vivax. Notably, these modified purines were not incorporated in dormant liver stage hypnozoites, suggesting this marker could be used as a tool to differentiate replicating and non-replicating liver forms and, more broadly, as a tool for advancing our understanding of Plasmodium dormancy mechanisms.


Assuntos
Fenômenos Biológicos , Malária Vivax , Malária , Plasmodium , Humanos , Plasmodium vivax/genética , Alcinos , Plasmodium/genética , Malária/parasitologia , Purinas , Adenosina , DNA , Malária Vivax/parasitologia
4.
J Biol Chem ; 298(5): 101925, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413287

RESUMO

Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a "degron". DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.


Assuntos
RNA Helicases DEAD-box , Synechocystis , RNA Helicases DEAD-box/metabolismo , Proteólise , RNA Bacteriano/metabolismo , Synechocystis/enzimologia , Synechocystis/genética
5.
Sci Rep ; 12(1): 5386, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354845

RESUMO

Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.


Assuntos
Neoplasias Encefálicas , Microcefalia , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Masculino , Microcefalia/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/genética
6.
FASEB J ; 36(1): e22080, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882832

RESUMO

Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5 loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3 kinase (PI3K)-ß activity. Knockdown of EC FGD5 abolished CXCR4 signaling to PI3K-ß and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-ß activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5 may regulate PI3K-ß activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5 mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-ß with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-ß signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.


Assuntos
Carcinoma de Células Renais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias Renais , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/genética
7.
Tijdschr Econ Soc Geogr ; 111(3): 434-450, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32836481

RESUMO

This critical commentary reflects on a rapidly mobilised international podcast project, in which 25 urban scholars from around the world provided audio recordings about their cities during COVID-19. New digital tools are increasing the speeds, formats and breadth of the research and communication mediums available to researchers. Voice recorders on mobile phones and digital audio editing on laptops allows researchers to collaborate in new ways, and this podcast project pushed at the boundaries of what a research method and community might be. Many of those who provided short audio 'reports from the field' recorded on their mobile phones were struggling to make sense of their experience in their city during COVID-19. The substantive sections of this commentary discuss the digital methodology opportunities that podcasting affords geographical scholarship. In this case the methodology includes the curated production of the podcast and critical reflection on the podcast process through collaborative writing. Then putting this methodology into action some limited reflections on cities under COVID-19 lockdown and social distancing initiatives around the world are provided to demonstrate the utility and limitations of this method.

8.
Life (Basel) ; 7(4)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088079

RESUMO

Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available.

10.
Soc Stud Sci ; 45(5): 738-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26630819

RESUMO

This collaborative article, written by graduate students who attended the Politics of Care in Technoscience Workshop, brings the themes in this volume to bear on their own developing science and technology study projects and research practices. Exploring the contours of five specific moments where questions of care have arisen in the course of their everyday research, they do not find a single or untroubled definition of care; instead, care is often a site of ambivalence, tension, and puzzlement. However, despite this uneasiness, they argue that taking the time to reflect on the multiple, sometimes conflicting, forms and definitions of care within a specific research context can inform the way that science and technology studies scholars envision and conduct their work.


Assuntos
Empatia , Feminismo , Pesquisadores , Ciência/ética , Tecnologia/ética , Pesquisadores/ética
11.
ACS Synth Biol ; 3(12): 972-5, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524102

RESUMO

The Traveling Salesman Problem involves finding the shortest possible route visiting all destinations on a map only once before returning to the point of origin. The present study demonstrates a strategy for solving Traveling Salesman Problems using modified E. coli cells as processors for massively parallel computing. Sequential, combinatorial DNA assembly was used to generate routes, in the form of plasmids made up of marker genes, each representing a path between destinations, and short connecting linkers, each representing a given destination. Upon growth of the population of modified E. coli, phenotypic selection was used to eliminate invalid routes, and statistical analysis was performed to successfully identify the optimal solution. The strategy was successfully employed to solve a four-destination test problem.


Assuntos
Biologia Computacional/métodos , Computadores Moleculares , Escherichia coli/genética , Escherichia coli/fisiologia , Modelos Biológicos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...