Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 40, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869353

RESUMO

BACKGROUND: There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS: We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS: This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.


Assuntos
Genoma Humano , Impressão Genômica , Família Multigênica , Humanos , Alelos , Cromatina
2.
Sci Rep ; 10(1): 13616, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788746

RESUMO

Topographical variations of metabolite concentrations have been reported in the duodenum, jejunum and ileum of the small intestine, and in human intestinal tumours from those regions, but there are no published metabolite concentrations measurements correlated with linear position in the mouse small intestine or intestinal tumours. Since DNA methylation dynamics are influenced by metabolite concentrations, they too could show linear anatomical variation. We measured metabolites by HR-MAS 1H NMR spectroscopy and DNA cytosine modifications by LC/MS, in normal small intestines of C57BL/6J wild-type mice, and in normal and tumour samples from ApcMin/+ mice. Wild-type mouse intestines showed approximately linear, negative concentration gradations from the pylorus (i.e. the junction with the stomach) of alanine, choline compounds, creatine, leucine and valine. ApcMin/+ mouse tumours showed negative choline and valine gradients, but a positive glycine gradient. 5-Hydroxymethylcytosine showed a positive gradient in the tumours. The linear gradients we found along the length of the mouse small intestine and in tumours contrast with previous reports of discrete concentration changes in the duodenum, jejunum and ileum. To our knowledge, this is also the first report of a systematic measurement of global levels of DNA cytosine modification in wild-type and ApcMin/+ mouse small intestine.


Assuntos
5-Metilcitosina/análogos & derivados , Proteína da Polipose Adenomatosa do Colo/genética , Colo/química , Neoplasias Intestinais/metabolismo , Intestino Delgado/química , Piloro/química , 5-Metilcitosina/química , Animais , Cromatografia Líquida , Feminino , Neoplasias Intestinais/genética , Masculino , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Prótons por Ressonância Magnética
3.
Sci Rep ; 10(1): 546, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953501

RESUMO

Cytosine hydroxymethylation (5hmC) in mammalian DNA is the product of oxidation of methylated cytosines (5mC) by Ten-Eleven-Translocation (TET) enzymes. While it has been shown that the TETs influence 5mC metabolism, pluripotency and differentiation during early embryonic development, the functional relationship between gene expression and 5hmC in adult (somatic) stem cell differentiation is still unknown. Here we report that 5hmC levels undergo highly dynamic changes during adult stem cell differentiation from intestinal progenitors to differentiated intestinal epithelium. We profiled 5hmC and gene activity in purified mouse intestinal progenitors and differentiated progeny to identify 43425 differentially hydroxymethylated regions and 5325 differentially expressed genes. These differentially marked regions showed both losses and gains of 5hmC after differentiation, despite lower global levels of 5hmC in progenitor cells. In progenitors, 5hmC did not correlate with gene transcript levels, however, upon differentiation the global increase in 5hmC content showed an overall positive correlation with gene expression level as well as prominent associations with histone modifications that typify active genes and enhancer elements. Our data support a gene regulatory role for 5hmC that is predominant over its role in controlling DNA methylation states.


Assuntos
5-Metilcitosina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Intestinos/citologia , 5-Metilcitosina/farmacologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Camundongos
4.
Essays Biochem ; 63(1): 177-186, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30967478

RESUMO

Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades support RNA as an important component of chromatin structure [Genes Dev. (2005) 19, 1635-1655; PLoS ONE (2007) 2, e1182; Nat. Genet. (2002) 30, 329-334]. Long non-coding RNAs (lncRNAs) are able to control chromatin structure through nucleosome positioning, interaction with chromatin re-modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the experimental evidence to support them.


Assuntos
Cromatina/genética , Genoma/genética , RNA Longo não Codificante/genética , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , DNA/química , DNA/genética , Humanos , Conformação de Ácido Nucleico , Conformação Proteica
5.
Oncotarget ; 7(46): 74734-74746, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27732966

RESUMO

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 1-beta Nuclear de Hepatócito/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Alelos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Risco
6.
Nat Commun ; 7: 10406, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26832224

RESUMO

Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Ciclo Celular , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , Interferência de RNA , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA Longo não Codificante/genética , Proteínas rho de Ligação ao GTP/genética
7.
Sci Rep ; 5: 12714, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26239807

RESUMO

The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/genética , Genoma , MicroRNAs/genética , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/genética , 5-Metilcitosina/análogos & derivados , Animais , Antimetabólitos/farmacologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Glutationa Peroxidase/deficiência , Glutationa Peroxidase/genética , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Glutationa Peroxidase GPX1
8.
Methods Mol Biol ; 1315: 259-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103905

RESUMO

Extensive epigenetic reprogramming occurs during mammalian gametogenesis and preimplantation development. DNA methylation patterns that are laid down during these stages are essential for subsequent normal foetal development. The requirement for more precise assessment of the epigenetic programming of in vitro-derived human preimplantation embryo has become of paramount importance following the identification of epigenetic diseases that are associated with assisted reproduction and/or infertility. Such techniques are also useful and applicable to experimental reproductive biology. In order to expand our knowledge of epigenetic marks, including DNA methylation, during mammalian reproduction and early development, it is necessary to test new and sufficiently sensitive protocols. There are, however, unique challenges to obtain DNA methylation data from the small cell numbers that are present in the preimplantation embryo. In this protocol, we describe the successful application of Pyrosequencing(®) to yield quantitative DNA methylation data over several CpG sites at differentially methylated regions (DMRs) at imprinted loci in single blastocysts, in this case, human blastocysts. Future developments of the protocol will allow DNA methylation analysis of a more extensive panel of genes for each embryo and at the same time, since the protocol allows for the extraction of mRNA from the embryo, the comparison between DNA methylation and gene expression.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Análise de Sequência de DNA/métodos , Adulto , DNA/genética , DNA/isolamento & purificação , Genômica , Humanos , Reação em Cadeia da Polimerase , Sulfitos/farmacologia
9.
Nat Chem Biol ; 11(8): 555-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26098680

RESUMO

5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.


Assuntos
5-Metilcitosina/metabolismo , Envelhecimento/metabolismo , Citosina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Citosina/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Meia-Vida , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
10.
Genome Biol ; 16: 69, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25853800

RESUMO

BACKGROUND: The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise. RESULTS: Here, we show that colorectal tumours and cancer cells express Ten-Eleven-Translocation (TET) transcripts at levels similar to normal tissues. Genome-wide analyses show that promoters marked by 5hmC in normal tissue, and those identified as TET2 targets in colorectal cancer cells, are resistant to methylation gain in cancer. In vitro studies of TET2 in cancer cells confirm that these promoters are resistant to methylation gain independently of sustained TET2 expression. We also find that a considerable number of the methylation gain-resistant promoters marked by 5hmC in normal colon overlap with those that are marked with poised bivalent histone modifications in embryonic stem cells. CONCLUSIONS: Together our results indicate that promoters that acquire 5hmC upon normal colon differentiation are innately resistant to neoplastic hypermethylation by mechanisms that do not require high levels of 5hmC in tumours. Our study highlights the potential of cytosine modifications as biomarkers of cancerous cell proliferation.


Assuntos
Neoplasias do Colo/genética , Citosina/análogos & derivados , Metilação de DNA/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , 5-Metilcitosina/análogos & derivados , Proliferação de Células/genética , Neoplasias do Colo/patologia , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Proteínas Proto-Oncogênicas/genética
11.
Nat Chem ; 6(12): 1049-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25411882

RESUMO

5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.


Assuntos
Citosina/análogos & derivados , DNA/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Ciclo Celular , Proliferação de Células , Citosina/química , Metilação de DNA , Células HCT116 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL
12.
Nat Genet ; 46(6): 528-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24866188

RESUMO

Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes at an imprinted locus on chromosome 15, including the long noncoding RNA IPW. A new study identifies a critical role for IPW in modulating the expression of maternally expressed genes in trans, which has important implications for the understanding of imprinted gene networks.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , Síndrome de Prader-Willi/genética , RNA não Traduzido/genética , Proteínas de Ligação ao Cálcio , Humanos , Masculino
13.
Biochemistry ; 52(52): 9519-27, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24320048

RESUMO

Long noncoding RNAs (lncRNAs) play a key role in the epigenetic regulation of cells. Many of these lncRNAs function by interacting with histone repressive proteins of the Polycomb group (PcG) family, recruiting them to gene loci to facilitate silencing. Although there are now many RNAs known to interact with the PRC2 complex, little is known about the details of the molecular interactions. Here, we show that the PcG protein heterodimer EZH2-EED is necessary and sufficient for binding to the lncRNA HOTAIR. We also show that protein recognition occurs within a folded 89-mer domain of HOTAIR. This 89-mer represents a minimal binding motif, as further deletion of nucleotides results in substantial loss of affinity for PRC2. These findings provide molecular insights into an important system involved in epigenetic regulation.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Dimerização , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Cinética , Conformação de Ácido Nucleico , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética
14.
Neoplasia ; 15(8): 898-912, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23908591

RESUMO

We previously reported the association of elevated levels of the multifunctional transcription factor, CCCTC binding factor (CTCF), in breast cancer cells with the specific anti-apoptotic function of CTCF. To understand the molecular mechanisms of this phenomenon, we investigated regulation of the human Bax gene by CTCF in breast and non-breast cells. Two CTCF binding sites (CTSs) within the Bax promoter were identified. In all cells, breast and non-breast, active histone modifications were present at these CTSs, DNA harboring this region was unmethylated, and levels of Bax mRNA and protein were similar. Nevertheless, up-regulation of Bax mRNA and protein and apoptotic cell death were observed only in breast cancer cells depleted of CTCF. We proposed that increased CTCF binding to the Bax promoter in breast cancer cells, by comparison with non-breast cells, may be mechanistically linked to the specific apoptotic phenotype in CTCF-depleted breast cancer cells. In this study, we show that CTCF binding was enriched at the Bax CTSs in breast cancer cells and tumors; in contrast, binding of other transcription factors (SP1, WT1, EGR1, and c-Myc) was generally increased in non-breast cells and normal breast tissues. Our findings suggest a novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells, whereby elevated levels of CTCF support preferential binding of CTCF to the Bax CTSs. In this context, CTCF functions as a transcriptional repressor counteracting influences of positive regulatory factors; depletion of breast cancer cells from CTCF therefore results in the activation of Bax and apoptosis.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Proteínas Repressoras/genética , Proteína X Associada a bcl-2/genética , Apoptose/genética , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2/metabolismo
15.
Am J Hum Genet ; 93(2): 224-35, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23871723

RESUMO

Imprinted gene clusters are regulated by long noncoding RNAs (lncRNAs), CCCTC binding factor (CTCF)-mediated boundaries, and DNA methylation. DIRAS3 (also known as ARH1 or NOEY1) is an imprinted gene encoding a protein belonging to the RAS superfamily of GTPases and is located within an intron of a lncRNA called GNG12-AS1. In this study, we investigated whether GNG12-AS1 is imprinted and coregulated with DIRAS3. We report that GNG12-AS1 is coexpressed with DIRAS3 in several tissues and coordinately downregulated with DIRAS3 in breast cancers. GNG12-AS1 has several splice variants, all of which initiate from a single transcription start site. In placenta tissue and normal cell lines, GNG12-AS1 is biallelically expressed but some isoforms are allele-specifically spliced. Cohesin plays a role in allele-specific splicing of GNG12-AS1. In breast cancer cell lines with loss of DIRAS3 imprinting, DIRAS3 and GNG12-AS1 are silenced in cis and the remaining GNG12-AS1 transcripts are predominantly monoallelic. The GNG12-AS1 locus, which includes DIRAS3, provides an example of imprinted cotranscriptional splicing and a potential model system for studying the long-range effects of CTCF-cohesin binding on splicing and transcriptional interference.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Impressão Genômica , RNA Longo não Codificante/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Processamento Alternativo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Humanos , Íntrons , Placenta/citologia , Placenta/metabolismo , Gravidez , RNA Longo não Codificante/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Coesinas
16.
Biochem Soc Trans ; 41(3): 697-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23697928

RESUMO

Our advances in technology allow us to sequence DNA to uncover genetic differences not only between individuals, but also between normal and diseased cells within an individual. However, there is still a lot we have yet to understand regarding the epigenetic mechanisms that also contribute to our individuality and to disease. The 80th Biochemical Society Annual Symposium entitled Epigenetic Mechanisms in Development and Disease brought together some leading researchers in the field who discussed their latest insights into epigenetic mechanisms. Methylation of DNA has been the focus of much study from both a developmental perspective and imprinting of genes to its contribution to diseases such as cancer. Recently, the modification of methylcytosine to hydoxymethylcytosine within cells was uncovered, which opened a host of potential new mechanisms, and a flurry of new studies are underway to uncover its significance. Epigenetics is not confined to a study of DNA, and the post-translational modifications on the histone proteins have a significant role to play in regulating gene expression. There are many different modifications and, as shown at the Symposium, new variations used by cells are still being uncovered. We are some way to identifying how these modifications are added and removed and the protein complexes responsible for these changes. A focus on the function of the complexes and the interactions between individual modifications to regulate gene expression is advancing our knowledge, as discussed in the accompanying papers, although there are clearly plenty of opportunities for new breakthroughs to be made.


Assuntos
Doença/genética , Epigênese Genética/fisiologia , Crescimento e Desenvolvimento/genética , Animais , Metilação de DNA , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
17.
Nucleic Acids Res ; 41(10): 5290-302, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585276

RESUMO

Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2'deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes.


Assuntos
Cromatina/química , Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação para Baixo , Elementos Facilitadores Genéticos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Loci Gênicos , Histonas/química , Histonas/metabolismo , Humanos , Metilação , Mucoproteínas/metabolismo , Proteínas de Neoplasias , Nucleossomos/química , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Coesinas
18.
Methods Mol Biol ; 925: 173-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907497

RESUMO

It is becoming increasingly apparent that chromatin is not randomly folded into the nucleus, but instead is highly organized into specific conformations within the nucleus. One consequence of such higher order structure is that chromatin looping can bring together genomic elements which are separated by several hundreds of kilobases, such as enhancers and promoters, and functionally facilitate their interaction. The Chromosome Conformation Capture (3C) assay is a powerful technique to detect looping structures and assess the probability of interaction between distant genomic elements (1-3). Here we describe the 3C methodology, its power, and limitations, together with the controls and normalization steps required for an accurate analysis.


Assuntos
Cromatina/química , Conformação de Ácido Nucleico , Animais , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Camundongos , Conformação Proteica
19.
Nat Cell Biol ; 14(7): 753-63, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22729083

RESUMO

It is becoming clear that interconnected functional gene networks, rather than individual genes, govern stem cell self-renewal and differentiation. To identify epigenetic factors that impact on human epidermal stem cells we performed siRNA-based genetic screens for 332 chromatin modifiers. We developed a Bayesian mixture model to predict putative functional interactions between epigenetic modifiers that regulate differentiation. We discovered a network of genetic interactions involving EZH2, UHRF1 (both known to regulate epidermal self-renewal), ING5 (a MORF complex component), BPTF and SMARCA5 (NURF complex components). Genome-wide localization and global mRNA expression analysis revealed that these factors impact two distinct but functionally related gene sets, including integrin extracellular matrix receptors that mediate anchorage of epidermal stem cells to their niche. Using a competitive epidermal reconstitution assay we confirmed that ING5, BPTF, SMARCA5, EZH2 and UHRF1 control differentiation under physiological conditions. Thus, regulation of distinct gene expression programs through the interplay between diverse epigenetic strategies protects epidermal stem cells from differentiation.


Assuntos
Diferenciação Celular/genética , Células Epidérmicas , Epigênese Genética , Redes Reguladoras de Genes , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Teorema de Bayes , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Adesão Celular/genética , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Modelos Genéticos , Complexos Multiproteicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 2 , Interferência de RNA , RNA Mensageiro/metabolismo , Nicho de Células-Tronco/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases
20.
Stem Cells ; 30(2): 161-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109880

RESUMO

Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.


Assuntos
Epigênese Genética , Impressão Genômica , Células-Tronco Pluripotentes/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Células Cultivadas , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...