RESUMO
This study investigates the potential of five compounds as novel anticancer agents. We examined their efficacy, mechanisms of action, and impact on various cancer cell lines, through a comprehensive set of experiments. Notably, compound 3e demonstrated superior activity compared to the positive control cisplatin, with a GI50 value of 6.3±0.7â µM against the breast cancer cell line (MCF-7). Compound 3b also displayed remarkable growth inhibition, yielding GI50 values of 8.7±0.2â µM (MCF-7) and 8.9±0.5â µM against the colon cancer cell line (HCT-116). Cell count experiments further confirmed the potent inhibitory effects of compounds 3e, 3b, and 3c on MCF-7 and HCT-116â cell growth. Compound 3e demonstrated a reduction of 55-60 % at GI50 and complete inhibition (100 %) at 2x GI50. Compound 3b exhibited 50-55 % reduction (GI50) and 90-95 % inhibition (2x GI50) in HCT-116 cells. Compound 3c displayed 75-80 % inhibition (2x GI50) and 35-40 % inhibition (GI50) in HCT-116 cells. In-depth mechanistic investigations unveiled valuable insights into the mode of action of compound 3e. The cell-cycle assay demonstrated G2/M phase arrest, DNA damage, and caspase-mediated apoptosis in both MCF-7 and HCT-116 cells. Caspase activation indicated a significant increase in apoptosis following exposure to compound 3e. Furthermore, compound 3e induced reactive oxygen species (ROS) production, influencing HCT-116 and MCF-7 cells differently. Elevated ROS production in HCT-116 cells and distinct effects in MCF-7 cells contribute to a deeper understanding of the cytotoxic mechanisms of compound 3e. Overall, these findings highlight the potential of the investigated compounds, particularly compound 3e, as effective inducers of apoptosis in cancer cells. Mechanistic insights into cell cycle arrest, caspase-mediated apoptosis, and ROS modulation provide a comprehensive understanding of their cytotoxic effects. This study offers significant contribution to the development of promising anticancer agents and their therapeutic applications.
RESUMO
This study addresses the critical need for efficient and sustainable methods to tackle organic pollutants and microbial contamination in water. The present work aim was to investigate the potential of multi-structured zinc oxide nanoparticles (ZnO NPs) for the combined photocatalytic degradation of organic pollutants and antimicrobial activity. A unique fusion of precipitation-cum-hydrothermal approaches was precisely employed to synthesize the ZnO NPs, resulting in remarkable outcomes. The synthesized CTAB/ZnO NPs demonstrated exceptional properties: they were multi-structured and crystalline with a size of 40 nm and possessed a narrow band gap energy of 2.82 eV, enhancing light absorption for photocatalysis. These nanoparticles achieved an impressive degradation efficiency of 91.75% for Reactive Blue-81 dye within 105 min under UV irradiation. Furthermore, their photocatalytic performance metrics were outstanding, including a quantum yield of 1.73 × 10-4 Φ, a kinetic reaction rate of 3.89 × 102 µmol g-1 h-1, a space-time yield of 8.64 × 10-6 molecules photon-1 mg-1, and a figure-of-merit of 1.03 × 10-9 mol L J-1 g-1 h-1. Notably, the energy consumption was low at 1.73 × 10-4 J mol-1, compared to other systems. Additionally, the ZnO NPs exhibited effective antimicrobial activity against S. aureus and P. aeruginosa. This research underscores the potential of tailored ZnO NPs as a versatile solution for addressing both organic pollution and microbial contamination in water treatment processes. The low energy consumption further enhances its attractiveness as a sustainable solution.
RESUMO
BACKGROUND: Alcohol-based handrub (ABHR) is the gold standard for hand hygiene (HH) and is a cornerstone of infection prevention and control (IPC) strategies. However, several factors influence the efficient use of ABHR by health workers. This study evaluated the tolerability and acceptability of a locally produced ABHR product and HH behaviour among health workers. METHODS: A longitudinal hospital-based intervention study was conducted in accordance with the WHO's standardized protocol for evaluating ABHR tolerability and acceptability (Method 1). Sixty health workers across 4 hospitals in Sierra Leone were observed over a 30-day period at three separate visits (days 1, 3-5, and 30) by trained observers. The outcomes of interest included skin tolerability and product acceptabilityevaluated using subjective and objective measures. RESULTS: Objective and subjective evaluations demonstrated strong skin tolerability and high acceptability with the product. At all three visits, the skin tolerability score assessed by trained observers was < 2 in ≥ 97% of participants, exceeding the WHO benchmark score (BMS = < 2 in ≥ 75%). Participants' self-evaluations of overall skin integrity were 97% (visit 2) and 98% (visit 3) for scores > 4 (BMS = > 4 in ≥ 75%). The primary acceptability criteria increased up to 95% (colour) and 88% (smell) at visit 3 (BMS = > 4 in ≥ 50%). Despite high acceptability, the product's drying effect remained low at 52% and 58% during visits 2 and 3, respectively (BMS = > 4 in ≥ 75%). There were positive HH behaviours (n = 53, 88%), with more than half (n = 38, 63%) of them exhibiting HH at almost every HH moment. The mean ABHR was notably high (76.1 ml, SD ± 35), especially among nurses (mean = 80.1 ml) and doctors (mean = 74.0 ml). CONCLUSION: The WHO-formulated, locally produced ABHR was well tolerated and accepted by health workers. These findings support the continuous utilization of evidence-based, cost-effective hand hygiene interventions in resource-limited settings. High handrub consumption and frequent HH practices were noticeable HH behaviours. Further research is recommended to optimize product formulations for skin dryness and investigate the association between ABHR consumption and hand hygiene compliance.
Assuntos
Higiene das Mãos , Humanos , Serra Leoa , Estudos Longitudinais , Feminino , Masculino , Adulto , Higiene das Mãos/normas , Higiene das Mãos/métodos , Pessoal de Saúde , Etanol , Pessoa de Meia-Idade , Desinfecção das Mãos/métodosRESUMO
Diabetes is an emerging threat to the world due to large number of deaths reported within the last decade. To overcome its spread and complications, herein, we reported synthesis and anti-diabetic potential of twelve novel 2-[(arylidenyl)methylidene]hydrazinyl-1,3-thiazole-5-carbaldehydes (3 a-l). All compounds have shown good to excellent α-amylase inhibitory activity, among them ortho substituted analogues, the compound 3 a (IC50=14.6â mM) and 3â l (IC50=17.9â mM) showed excellent inhibition potential due to the strong electron donating nature of the substituents attached at the aryl ring. The compounds 3 a-3 h (IC50=6.70-10.80â ppm) exhibited excellent anti-glycation potential as compared to standard amino-guanidine (IC50=11.92â ppm). Almost all the tested compounds are found biocompatible and very safe to the human erythrocyte cells at all tested concentrations. The molecular docking results have found that the binding energy score of all the tested compounds against human serum albumin protein (pdb: 1AO6) is between -5.1827 and -6.8661â kcal/mol which is far better than standard amino-guanidine (-4.234â kcal/mol).
RESUMO
The need for anticancer therapies that overcome metallodrug resistance while minimizing adverse toxicities is targeted, herein, using titanium coordination complexes. Octahedral titanium(IV) trans,mer-[Ti{R1N(CH2-2-MeO-4-R1-C6H2)2}2] [R1 = Et, allyl, n-Pr, CHO, F, CH2(morpholino), the latter from the formyl derivative; R2 = Me, Et; not all combinations] are attained from Mannich reactions of commercial 2-methoxyphenols (27-74% overall yield, 2 steps). These crystalline (four X-ray structures) Ti(IV)-complexes are active against MCF-7, HCT-116, HT-29, PANC-1, and MDA-MB-468 cancer cell lines (GI50 = 0.5-38 µM). Their activity and cancer selectivity (vs nontumor MRC-5 cells) typically exceeds that of cisplatin (up to 16-fold). Proteomic analysis (in MCF-7) supported by other studies (G2/M cell cycle arrest, ROS generation, γH2AX production, caspase activation, annexin positivity, western blot, and kinase screens in MCF-7 and HCT-116) suggest apoptosis elicited by more than one mechanism of action. Comparison of these data to the modes of action proposed for salan Ti(IV) complexes is made.
Assuntos
Antineoplásicos , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Aminas/farmacologia , Proteômica , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , ApoptoseRESUMO
Malaria and lymphatic filariasis (LF) are two serious public health challenges in sub-Saharan Africa, and both diseases are transmitted by Anopheles mosquitoes. Successful control of both diseases requires detailed information on transmission dynamics; thus, this study investigated malaria and LF transmission indices in two (2) communities (Jidawa and Kargo) in North-West Nigeria. Anopheles mosquitoes were sampled from twenty-five (25) randomly selected houses from each of the two communities using pyrethrum spray collection (PSC). The samples were identified morphologically and molecularly characterised using polymerase chain reaction (PCR). Human biting rate (HBR), indoor resting density (IRD), sporozoite rate (SR) and entomological inoculation rate (EIR) were calculated using standard formulae. The thorax region of the collected samples were dissected and smeared; then, Plasmodium and Wuchereria bancrofti parasites were identified using microscopy. A total of 2417 Anopheles mosquitoes were collected, and all were identified morphologically as An. gambiae s.l. Further molecular identification of sibling species revealed that An. gambiae and An. arabiensis were the only sibling species present. A total of 818 Anopheles mosquitoes were screened for Plasmodium and Wuchereria bancrofti parasites. A total of 180 samples were positive for Plasmodium parasites (Jidawa = 151; Kargo = 29), and none was positive for W. bancrofti (0%). Result of entomological indices for malaria transmission showed that indoor resting density was higher in Jidawa (10 mosquitoes/room/night) while human biting rate (2.07 bites/person/night), sporozoite rate (29.3%) and entomological inoculation rate (0.61) were higher in Kargo. In total, 35.2% of the samples were blood-fed while 67.4% were parous. There is active transmission of malaria in the two communities but not LF, suggesting the effectiveness of mass drug administration for LF. Concerted efforts should be focused on malaria control as transmission of the disease persists.
Assuntos
Anopheles , Filariose Linfática , Malária , Plasmodium , Animais , Humanos , Anopheles/parasitologia , Filariose Linfática/epidemiologia , Mosquitos Vetores/parasitologia , Nigéria/epidemiologia , Esporozoítos , Wuchereria bancrofti , Distribuição AleatóriaRESUMO
Cyclization of substituted thiosemicarbazones with α-bromo-4-cyanoacetophenone allows rapid single-step sustainable syntheses of 4-cyanophenyl-2-hydrazinylthiazoles libraries (30 examples, 66-79%). All show anticancer efficacy against HCT-116 and MCF-7 carcinoma cell lines with the majority being more active than cisplatin positive controls. The compounds 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f) and 2-(2-((pentafluorophenyl)methylene)-hydrazinyl)-4-(4-cyanophenyl)thiazole (3a') show optimal GI50 values (1.0 ± 0.1 µM and 1.7 ± 0.3 µM) against MCF-7 breast cancer cells. Against colorectal carcinoma HCT-116 cells, (2-(2-(3-bromothiophen-2-yl)methylene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3b'), 2-(2-(2-hydroxy-3-methylbenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3f), 2-(2-(2,6-dichlorobenzylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3n) and 2-(2-(1-(4-fluorophenyl)ethylidene)hydrazinyl)-4-(4-cyanophenyl)thiazole (3w) are the most active (GI50 values: 1.6 ± 0.2, 1.6 ± 0.1, 1.1 ± 0.5 and 1.5 ± 0.8 µM respectively). Control studies with MRC-5 cells indicate appreciable selectivity towards the cancer cells targeted. Significant (p < 0.005) growth inhibition and cytotoxicity effects for the thiazoles 3 were corroborated by cell count and clonogenic assays using the same cancer cell lines at 5 and 10 µM agent concentrations. Cell cycle, caspase activation and Western blot assays demonstrated that compounds 3b' and 3f induce cancer cell death via caspase-dependent apoptosis. The combination of straight forward synthesis and high activity makes the thiazoles 3 an interesting lead for further development.
RESUMO
Thiazole has been a key scaffold in antidiabetic drugs. In quest of new and more effective drugs a simple, efficient, high yielding (67-79 %) and convenient synthesis of arylidenehydrazinyl-4-methoxyphenyl)thiazoles is accomplished over two steps. The synthesis involved the condensation of aryl substituted thiosemicarbazones and 2-bromo-4-methoxyacetophenone in absolute ethanol. The structures of the resulting thiazoles are in accord with their UV/VIS, FT-IR, 1 H-, 13 C-NMR and HRMS data. All compounds were evaluated for alpha(α)-amylase inhibition potential, antiglycation, antioxidant abilities and biocompatibility. The compounds library identified 2-(2-(3,4-dichlorobenzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole as a lead molecule against α-amylase inhibition with an IC50 of 5.75±0.02â µM. α-Amylase inhibition is also supported by molecular docking studies against α-amylase. All the obtained thiazoles also showed promising antiglycation activity with 4-(4-methoxyphenyl)-2-{2-[2-(trifluoromethyl)benzylidene]hydrazinyl}thiazole exhibiting the best inhibition (IC50 = 0.383±0.001â mg/mL) compared to control. The tested compounds are also biocompatible at the concentration used i. e., 10â µM.
Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Amilases , Tiazóis/química , Estrutura MolecularRESUMO
This study examined pyrethroid resistance intensity and mechanisms in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West Nigeria. Resistance statuses to permethrin, lambda-cyhalothrin and alphacypermethrin were determined with both WHO and CDC resistance bioassays. Synergist assay was conducted by pre-exposing the populations to Piperonyl butoxide (PBO) using the WHO method. Resistance intensities to 2x, 5x and 10x of diagnostic concentrations were determined with the CDC bottle method. Species analysis and presence of knockdown mutation (Leu-Phe) were done using Polymerase Chain Reaction (PCR). Results showed that Cx. quinquefasciatus was the only Culex spp. present and "Kdr-west" mutation was not detected in all analyzed samples. Using WHO method, Cx. quinquefasciatus resistance to permethrin was detected in Dutse (12.2%) and Kafin-Hausa (77.78%). Lambda-cyhalothrin resistance was recorded only in Kafin-Hausa (83.95%) with resistance suspected in Ringim (90%). Resistance to alphacypermethrin was recorded in all locations. Pre-exposure to PBO led to 100% mortality to alphacypermethrin and lambda-cyhalothrin in Ringim while mortality to permethrin and alphacypermethrin in Dutse increased from 12.2% to 97.5% and 64.37% to 79.52% respectively. Using CDC bottle bioassay, resistance was also recorded in all populations and the result shows a significant positive correlation (R2 = 0.728, p = 0.026) with the result from the WHO bioassay. Results of resistance intensity revealed a very high level of resistance in Kafin-Hausa with susceptibility to lambda-cyhalothrin and alphacypermethrin not achieved at 10x of diagnostic doses. Resistance intensity was also high in Dutse with susceptibility to all insecticides not achieved at 5x of diagnostic doses. Widespread and high intensity of resistance in Cx. quinquefasciatus from North-West Nigeria is a major threat to the control of diseases transmitted by Culex and other mosquito species. It is a challenge that needs to be adequately addressed so as to prevent the failure of pyrethroid-based vector control tools.
Assuntos
Anopheles , Culex , Inseticidas , Piretrinas , Animais , Culex/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores/genética , Nigéria , Permetrina/farmacologia , Piretrinas/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Kigelia africana is a quintessential African herbal medicinal plant with a pan-African distribution and immense indigenous medicinal and non-medicinal applications. The plant is use traditionally as a remedy for numerous disease such as use wounds healing, rheumatism, psoriasis, diarrhea and stomach ailments. It is also use as an aphrodisiac and for skin care. AIM OF THE REVIEW: The present review aims to compile an up-to-date review of the progress made in the continuous pharmacological and phytochemistry investigation of K. africana and the corresponding commercial and pharmaceutical application of these findings with the ultimate objective of providing a guide for future research on this plant. METHOD: The scholarly information needed for this paper were predominantly sourced from the electronic search engines such as Google, Google scholar; publishing sites such as Elsevier, scienceDirect, BMC, PubMed; other scientific database sites for chemicals such as ChemSpider, PubChem, and also from online books. RESULTS: Pharmacological investigations conducted confirm the anti-inflammatory, analgesic, antioxidant and anticancer activity of the extract of different parts of the plant. Bioactive constituents are found to be present in all parts of the plant. So far, approximately 150 compounds have been characterized from different part of the plant. Iridoids, naphthoquinones, flavonoids, terpenes and phenylethanoglycosides are the major class of compounds isolated. Novel compounds with potent antioxidant, antimicrobial and anticancer effect such as verbascoside, verminoside and pinnatal among others, have been identified. Commercial trade of K. africana has boosted in the las few decades. Its effect in the maintenance of skin has been recognized resulting in a handful of skin formulations in the market. CONCLUSIONS: The pharmaceutical potentials of K. africana has been recognized and have witness a surge in research interest. However, till date, many of its traditional medicinal uses has not been investigated scientifically. Further probing of the existential researches on its pharmacological activity is recommended with the end-goal of unravelling the pharmacodynamics, pharmacokinetics, clinical relevance and possible toxicity and side effects of both the extract and the active ingredients isolated.