Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 50, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558550

RESUMO

We report characteristics of soybean genetic diversity and structure from the resequencing of 481 diverse soybean accessions, comprising 52 wild (Glycine soja) selections and 429 cultivated (Glycine max) varieties (landraces and elites). This data was used to identify 7.8 million SNPs, to predict SNP effects relative to genic regions, and to identify the genetic structure, relationships, and linkage disequilibrium. We found evidence of distinct, mostly independent selection of lineages by particular geographic location. Among cultivated varieties, we identified numerous highly conserved regions, suggesting selection during domestication. Comparisons of these accessions against the whole U.S. germplasm genotyped with the SoySNP50K iSelect BeadChip revealed that over 95% of the re-sequenced accessions have a high similarity to their SoySNP50K counterparts. Probable errors in seed source or genotype tracking were also identified in approximately 5% of the accessions.


Assuntos
Genoma de Planta , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Produtos Agrícolas/genética , Fabaceae/genética , Genótipo , Geografia , Desequilíbrio de Ligação , Seleção Genética
2.
Sci Rep ; 6: 23598, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029319

RESUMO

Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.


Assuntos
Genoma de Planta , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Óleo de Soja/genética , Alelos , Mapeamento Cromossômico , Variação Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Característica Quantitativa Herdável , Análise de Sequência de DNA , Óleo de Soja/biossíntese
3.
PLoS One ; 10(3): e0120490, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756528

RESUMO

Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315-I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean.


Assuntos
Glycine max/genética , Raízes de Plantas/genética , Epistasia Genética , Estudos de Associação Genética , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta , Locos de Características Quantitativas , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento
4.
Plant Cell ; 26(12): 4584-601, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25465409

RESUMO

Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glycine max/genética , MicroRNAs/fisiologia , RNA Interferente Pequeno/fisiologia , Bases de Dados Genéticas , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
5.
BMC Genomics ; 8: 47, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17291341

RESUMO

BACKGROUND: Molecular markers serve three important functions in physical map assembly. First, they provide anchor points to genetic maps facilitating functional genomic studies. Second, they reduce the overlap required for BAC contig assembly from 80 to 50 percent. Finally, they validate assemblies based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy in combination with a high-throughput PCR-based screening method to anchor the maize genetic and physical maps. RESULTS: A total of 110,592 maize BAC clones (approximately 6x haploid genome equivalents) were pooled into six different matrices, each containing 48 pools of BAC DNA. The quality of the BAC DNA pools and their utility for identifying BACs containing target genomic sequences was tested using 254 PCR-based STS markers. Five types of PCR-based STS markers were screened to assess potential uses for the BAC pools. An average of 4.68 BAC clones were identified per marker analyzed. These results were integrated with BAC fingerprint data generated by the Arizona Genomics Institute (AGI) and the Arizona Genomics Computational Laboratory (AGCoL) to assemble the BAC contigs using the FingerPrinted Contigs (FPC) software and contribute to the construction and anchoring of the physical map. A total of 234 markers (92.5%) anchored BAC contigs to their genetic map positions. The results can be viewed on the integrated map of maize 12. CONCLUSION: This BAC pooling strategy is a rapid, cost effective method for genome assembly and anchoring. The requirement for six replicate positive amplifications makes this a robust method for use in large genomes with high amounts of repetitive DNA such as maize. This strategy can be used to physically map duplicate loci, provide order information for loci in a small genetic interval or with no genetic recombination, and loci with conflicting hybridization-based information.


Assuntos
Cromossomos Artificiais Bacterianos , Genoma de Planta , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Ácido Nucleico , Zea mays/genética , Primers do DNA , DNA de Plantas/genética , Marcadores Genéticos , Fatores de Transcrição/genética
6.
Plant Physiol ; 130(4): 1686-96, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481051

RESUMO

Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6x coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 x Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 +/- 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Hibridização de Ácido Nucleico/métodos , Mapeamento Físico do Cromossomo/métodos , Zea mays/genética , Southern Blotting , Mapeamento de Sequências Contíguas/métodos , Polimorfismo de Fragmento de Restrição , Mapeamento por Restrição/métodos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...