Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2787: 81-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656483

RESUMO

Plant genetics plays a key role in determining root hair initiation and development. A complex network of genetic interactions therefore closely monitors and influences root hair phenotype and morphology. The significance of these genes can be studied by employing, for instance, loss-of-function mutants, overexpression plant lines, and fluorescently labeled constructs. Confocal laser scanning microscopy is a great tool to visually observe and document these morphological features. This chapter elaborates the techniques involved in handling of microscopic setup to acquire images displaying root hair distribution along the fully elongated zone of Arabidopsis thaliana roots. Additionally, we illustrate an approach to visualize early fate determination of epidermal cells in the root apical meristem, by describing a method for imaging YFP tagged transgenic plant lines.


Assuntos
Arabidopsis , Microscopia Confocal , Raízes de Plantas , Microscopia Confocal/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/citologia , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Meristema/crescimento & desenvolvimento , Meristema/genética
2.
FEBS J ; 289(11): 3086-3092, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34051053

RESUMO

O-linked modification of nuclear and cytosolic proteins with monosaccharides is essential in all eukaryotes. While many aspects of this post-translational modification are highly conserved, there are striking differences between plants and the animal kingdom. In animals, dynamic cycling of O-GlcNAc is established by two essential single copy enzymes, the O-GlcNAc transferase OGT and O-GlcNAc hydrolase OGA. In contrast, plants balance O-GlcNAc with O-fucose modifications, catalyzed by the OGT SECRET AGENT (SEC) and the protein O-fucosyltransferase (POFUT) SPINDLY (SPY). However, specific glycoside hydrolases for either of the two modifications have not yet been identified. Nucleocytoplasmic O-glycosylation is still not very well understood in plants, even though a high number of proteins were found to be affected. One important open question is how specificity is established in a system where only two enzymes modify hundreds of proteins. Here, we discuss the possibility that O-GlcNAc- and O-fucose-binding proteins could introduce an additional flexible layer of regulation in O-glycosylation-mediated signaling pathways, with the potential of integrating internal or external signals.


Assuntos
Fucose , N-Acetilglucosaminiltransferases , Acetilglucosamina/metabolismo , Animais , Núcleo Celular/metabolismo , Fucose/metabolismo , Glicosilação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
3.
Development ; 147(19)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32928908

RESUMO

Root hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Raízes de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosilação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Raízes de Plantas/genética , Proteínas Repressoras/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA