Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39315910

RESUMO

The Flexible Imaging Diffraction Diagnostic for Laser Experiments (FIDDLE) is a new diagnostic at the National Ignition Facility (NIF) designed to observe in situ solid-solid phase changes at high pressures using time resolved x-ray diffraction. FIDDLE currently incorporates five Icarus ultrafast x-ray imager sensors that take 2 ns snapshots and can be tuned to collect X-rays for tens of ns. The platform utilizes the laser power at NIF for both the laser drive and the generation of 10 keV X-rays for ∼10 ns using a Ge backlighter foil. We aim to use FIDDLE to observe diffraction at different times during compression to probe the kinetics of phase changes. Pb undergoes two solid-solid phase transitions during ramp compression: from face centered cubic (FCC) to hexagonal close packed (HCP) and HCP to body centered cubic (BCC). Results will be reported on some of the first shots using the FIDDLE diagnostic at NIF on ramp compressed Pb to a peak pressure of ∼110 GPa and a single undriven CeO2 calibration shot. A discussion of the uncertainties in the observed diffraction is included.

2.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287482

RESUMO

As part of a program to measure phase transition timescales in materials under dynamic compression, we have designed new x-ray imaging diagnostics to record multiple x-ray diffraction measurements during a single laser-driven experiment. Our design places several ns-gated hybrid CMOS (hCMOS) sensors within a few cm of a laser-driven target. The sensors must be protected from an extremely harsh environment, including debris, electromagnetic pulses, and unconverted laser light. Another key challenge is reducing the x-ray background relative to the faint diffraction signal. Building on the success of our predecessor (Target Diffraction In Situ), we implemented a staged approach to platform development. First, we built a demonstration diagnostic (Gated Diffraction Development Diagnostic) with two hCMOS sensors to confirm we could adequately protect them from the harsh environment and also acquire acceptable diffraction data. This allowed the team to quickly assess the risks and address the most significant challenges. We also collected scientifically useful data during development. Leveraging what we learned, we recently developed a much more ambitious instrument (Flexible Imaging Diffraction Diagnostic for Laser Experiments) that can field up to eight hCMOS sensors in a flexible geometry and participate in back-to-back shots at the National Ignition Facility (NIF). The design also allows for future iterations, such as faster hCMOS sensors and an embedded x-ray streak camera. The enhanced capabilities of the new instrument required a much more complex design, and the unexpected issues encountered on the first few shots at NIF remind us that complexity has consequences. Our progress in addressing these challenges is described herein, as is our current focus on improving data quality by reducing x-ray background and quantifying the uncertainties of our diffraction measurements.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177462

RESUMO

Hardened gated x-ray detectors use photographic film as the data recording medium due to its low sensitivity to the high-yield neutron environments at the National Ignition Facility (NIF). The photographic film is digitized with a Photometric Data Systems (PDS) microdensitometer, which measures the film's optical density. The PDS scanner is able to measure a dynamic range of 0-5 OD; however, raster scanning the film is time consuming and maintenance of the instrument is challenging due to legacy technology. Since film usage at NIF is expected to continue in the foreseeable future, a digitization platform that is faster and more maintainable would benefit the NIF's current and future operations. This work presents the characterization of the digital transitions (DT) atom, a CMOS camera-based digitization platform that records film data in a single image capture very quickly and has widely available user support. The preliminary results suggest that the DT atom is able to reconstruct exposures accurately enough to be a competitive alternative to the PDS Scanner.

4.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39012179

RESUMO

Inertial confinement fusion experiments taking place at the National Ignition Facility are generating ever increasing amounts of fusion energy, with the deuterium tritium fusion neutron yield growing a hundredfold over the past ten years. Strategies must be developed to mitigate this harsh environment's deleterious effects on the operation and the performance of the time-resolved x-ray imagers deployed in the National Ignition Facility target bay to record the dynamics of the implosions. We review the evolution of these imagers in recent years and detail some of the past and present efforts undertaken to maintain or improve the quality of the experimental data collected on high neutron yield experiments. These include the use of a dump-and-read electronic backend, the selection of photographic film with a low background sensitivity, and the optical filtering of Cherenkov radiation.

5.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39041902

RESUMO

The Flexible Imaging Diffraction Diagnostic for Laser Experiments (FIDDLE) is a newly developed diagnostic for imaging time resolved diffraction in experiments at the National Ignition Facility (NIF). It builds on the successes of its predecessor, the Gated Diffraction Development Diagnostic (G3D). The FIDDLE was designed to support eight Daedalus version 2 sensors (six more hCMOS sensors than any other hCMOS-based diagnostic in NIF to date) and an integrated streak camera. We will review the electrical requirements, design, and performance of the electrical subsystems that were created to support this large number of cameras in the FIDDLE. The analysis of the data that the FIDDLE is intended to collect relies heavily on the accurate and well-understood timing of each sensor. We report camera-to-camera timing jitter of less than 100 ps rms and sensor integration times of 2.2 ns FWHM in 2-2 timing mode. Additionally, diffraction experiments on the NIF produce electric fields (EMI) on the order of 1 kV/m, which have been observed to negatively impact the performance of some electrical components of the FIDDLE. We report on the results of testing hCMOS camera electronics in a similar EMI environment generated in an offline lab. We also summarize the use of a novel approach to using a vector network analyzer as an EMI leak detector to understand and reduce the negative impacts of EMI on the FIDDLE.

6.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236087

RESUMO

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

7.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088778

RESUMO

Nanosecond-gated hybrid complementary metal-oxide semiconductor imaging sensors are a powerful tool for temporally gated and spatially resolved measurements in high energy density science, including inertial confinement fusion, and in laser diagnostics. However, a significant oscillating background excited by photocurrent has been observed in image sequences during testing and in experiments at the National Ignition Facility (NIF). Characterization measurements and simulation results are used to explain the oscillations as the convolution of the pixel-level sensor response with a sensor-wide RLC circuit ringing. Data correction techniques are discussed for NIF diagnostics, and for diagnostics where these techniques cannot be used, a proof-of-principle image correction algorithm is presented.

8.
Rev Sci Instrum ; 94(2): 021102, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859044

RESUMO

During the past decade, a number of diagnostic instruments have been developed that utilize electron pulse-dilation to achieve temporal resolution in the 5-30 ps range. These development efforts were motivated by the need for advanced diagnostics for high-energy density physics experiments around the world. The new instruments include single- and multi-frame gated imagers and non-imaging detectors that record continuous data streams. Electron pulse-dilation provides high-speed detection capability by converting incoming signals into a free electron cloud and manipulating the electron signal with electric and magnetic fields. Here, we discuss design details and applications of these instruments along with issues and challenges associated with employing the electron pulse-dilation technique. Additionally, methods to characterize instrument performance and improve tolerance to gamma and neutron background radiation are discussed.

9.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

10.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586918

RESUMO

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

11.
Rev Sci Instrum ; 93(8): 083516, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050109

RESUMO

The hardened single line of sight camera has been recently characterized in preparation for its deployment on the National Ignition Facility. The latest creation based on the pulse-dilation technology leads to many new features and improvements over the previous-generation cameras to provide better quality measurements of inertial confinement fusion experiments, including during high neutron yield implosions. Here, we present the characterization data that illustrate the main performance features of this instrument, such as extended dynamic range and adjustable internal magnification, leading to improved spatial resolution.

12.
AJNR Am J Neuroradiol ; 43(7): 960-965, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680162

RESUMO

BACKGROUND AND PURPOSE: Information of collateral flow may help to determine eligibility for thrombectomy. Our aim was to identify CT perfusion-based surrogate parameters of good collateral status in acute anterior circulation ischemic stroke. MATERIALS AND METHODS: In this retrospective study, we assessed the collateral status of 214 patients who presented with acute ischemic stroke due to occlusion of the MCA M1 segment or the carotid terminus. Collaterals were assessed on dynamic CTA images analogous to the multiphase CTA score by Menon et al. CT perfusion parameters (time-to-maximum, relative CBF, hypoperfusion intensity ratio, and CBV-index) were assessed with RAPID software. The Spearman rank correlation and receiver operating characteristic analyses were performed to identify the parameters that correlate with collateral scores and good collateral supply (defined as a collateral score of ≥4). RESULTS: The Spearman rank correlation was highest for a relative CBF < 38% volume (ρ = -0.66, P < .001), followed by the hypoperfusion intensity ratio (ρ = -0.49, P < .001), CBV-index (ρ = 0.51, P < .001), and time-to-maximum > 8 seconds (ρ = -0.54, P < .001). Good collateral status was better identified by a relative CBF < 38% at a lesion size <27 mL (sensitivity of 75%, specificity of 80%) compared with a hypoperfusion intensity ratio of <0.4 (sensitivity of 75%, specificity of 62%), CBV-index of >0.8 (sensitivity of 60%, specificity of 78%), and time-to-maximum > 8 seconds (sensitivity of 68%, specificity of 76%). CONCLUSIONS: Automated CT perfusion analysis allows accurate identification of collateral status in acute ischemic stroke. A relative CBF < 38% may be a better perfusion-based indicator of good collateral supply compared with time-to-maximum, the hypoperfusion intensity ratio, and the CBV-index.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/diagnóstico por imagem , Circulação Cerebrovascular , Circulação Colateral , Humanos , Perfusão , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
14.
Rev Sci Instrum ; 93(2): 023505, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232158

RESUMO

A new generation of gated x-ray detectors at the National Ignition Facility has brought faster, enhanced imaging capabilities. Their performance is currently limited by the amount of signal they can be operated with before space charge effects in their electron tube start to compromise their temporal and spatial response. We present a technique to characterize this phenomenon and apply it to a prototype of such a system, the Single Line Of Sight camera. The results of this characterization are used to benchmark particle-in-cell simulations of the electrons drifting inside the detector, which are found to well reproduce the experimental data. These simulations are then employed to predict the optimum photon flux to the camera, with the goal to increase the quality of the images obtained on an experimental campaign while preventing the appearance of deleterious effects. They also offer some insights into some of the improvements that can be brought to the new pulse-dilation systems being built at Lawrence Livermore National Laboratory.

15.
Clin Neuroradiol ; 32(1): 133-140, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34709408

RESUMO

PURPOSE: We hypothesize that the detectability of early ischemic changes on non-contrast computed tomography (NCCT) is limited in hyperacute stroke for both human and machine-learning based evaluation. In short onset-time-to-imaging (OTI), the CT angiography collateral status may identify fast stroke progressors better than early ischemic changes quantified by ASPECTS. METHODS: In this retrospective, monocenter study, CT angiography collaterals (Tan score) and ASPECTS on acute and follow-up NCCT were evaluated by two raters. Additionally, a machine-learning algorithm evaluated the ASPECTS scale on the NCCT (e-ASPECTS). In this study 136 patients from 03/2015 to 12/2019 with occlusion of the main segment of the middle cerebral artery, with a defined symptom-onset-time and successful mechanical thrombectomy (MT) (modified treatment in cerebral infarction score mTICI = 2c or 3) were evaluated. RESULTS: Agreement between acute and follow-up ASPECTS were found to depend on OTI for both human (Intraclass correlation coefficient, ICC = 0.43 for OTI < 100 min, ICC = 0.57 for OTI 100-200 min, ICC = 0.81 for OTI ≥ 200 min) and machine-learning based ASPECTS evaluation (ICC = 0.24 for OTI < 100 min, ICC = 0.61 for OTI 100-200 min, ICC = 0.63 for OTI ≥ 200 min). The same applied to the interrater reliability. Collaterals were predictors of a favorable clinical outcome especially in hyperacute stroke with OTI < 100 min (collaterals: OR = 5.67 CI = 2.38-17.8, p < 0.001; ASPECTS: OR = 1.44, CI = 0.91-2.65, p = 0.15) while ASPECTS was in prolonged OTI ≥ 200 min (collaterals OR = 4.21,CI = 1.36-21.9, p = 0.03; ASPECTS: OR = 2.85, CI = 1.46-7.46, p = 0.01). CONCLUSION: The accuracy and reliability of NCCT-ASPECTS are time dependent for both human and machine-learning based evaluation, indicating reduced detectability of fast stroke progressors by NCCT. In hyperacute stroke, collateral status from CT-angiography may help for a better prognosis on clinical outcome and explain the occurrence of futile recanalization.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Isquemia Encefálica/terapia , Angiografia Cerebral/métodos , Angiografia por Tomografia Computadorizada/métodos , Humanos , Aprendizado de Máquina , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Tomografia Computadorizada por Raios X/métodos
16.
Eur Radiol ; 32(4): 2246-2254, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773465

RESUMO

OBJECTIVES: Artif icial intelligence (AI)-based image analysis is increasingly applied in the acute stroke field. Its implementation for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) scans may facilitate clinical decision-making and accelerate stroke management. METHODS: NCCTs of 160 patients with suspected acute stroke were analyzed regarding the presence or absence of acute intracranial hemorrhages (ICH) using a novel AI-based algorithm. Read was performed by two blinded neuroradiology residents (R1 and R2). Ground truth was established by an expert neuroradiologist. Specificity, sensitivity, and area under the curve were calculated for ICH and intraparenchymal hemorrhage (IPH) detection. IPH-volumes were segmented and quantified automatically by the algorithm and semi-automatically. Intraclass correlation coefficient (ICC) and Dice coefficient (DC) were calculated. RESULTS: In total, 79 of 160 patients showed acute ICH, while 47 had IPH. Sensitivity and specificity for ICH detection were 0.91 and 0.89 for the algorithm; 0.99 and 0.98 for R1; and 1.00 and 0.98 for R2. Sensitivity and specificity for IPH detection were 0.98 and 0.89 for the algorithm; 0.83 and 0.99 for R1; and 0.91 and 0.99 for R2. Interreader reliability for ICH and IPH detection showed strong agreements for the algorithm (0.80 and 0.84), R1 (0.96 and 0.84), and R2 (0.98 and 0.92), respectively. ICC indicated an excellent (0.98) agreement between the algorithm and the reference standard of the IPH-volumes. The mean DC was 0.82. CONCLUSION: The AI-based algorithm reliably assessed the presence or absence of acute ICHs in this dataset and quantified IPH volumes precisely. KEY POINTS: • Artificial intelligence (AI) is able to detect hyperdense volumes on brain CTs reliably. • Sensitivity and specificity are highest for the detection of intraparenchymal hemorrhages. • Interreader reliability for hemorrhage detection shows strong agreement for AI and human readers.


Assuntos
Inteligência Artificial , Acidente Vascular Cerebral , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
17.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

18.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243269

RESUMO

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

19.
Rev Sci Instrum ; 92(5): 053511, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243355

RESUMO

Being able to provide high-resolution x-ray radiography is crucial in order to study hydrodynamic instabilities in the high-energy density regime at the National Ignition Facility (NIF). Current capabilities limit us to about 20 µm resolution using pinholes, but recent studies have demonstrated the high-resolution capability of the Fresnel zone plate optics at the NIF, measuring 2.3 µm resolution. Using a zinc Heα line at 9 keV as a backlighter, we obtained a radiograph of Rayleigh-Taylor instabilities with a measured resolution of under 3 µm. Two images were taken with a time integrated detector and were time gated by a laser pulse duration of 600 ps, and a third image was taken with a framing camera with a 100 ps time gate on the same shot and on the same line of sight. The limiting factors on image quality for these two cases are the motion blur and the signal to noise ratio, respectively. We also suggest solutions to increase the image quality.

20.
Clin Neuroradiol ; 31(1): 217-224, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31848644

RESUMO

BACKGROUND: Hemodialysis (HD), especially when first initiated, can cause neurological deterioration. Presumably this is due to transient cerebral edema, which has been observed using diffusion weighted magnetic resonance imaging (MRI) in experimental and human studies; however, this has not been investigated under maintenance hemodialysis (mHD). Moreover, there are no studies to date investigating regional effects of mHD on grey and white matter volumes. METHODS: In this study eight patients with end stage renal disease (ESRD) were examined immediately before and after mHD sessions with multimodal MRI, including diffusion tensor imaging (DTI) and high-resolution structural imaging. Additionally, eight healthy, age-matched and sex-matched controls were examined for comparison. Data were analyzed using tract-based spatial statistics and voxel-based morphometry. RESULTS: At baseline, ESRD patients had significantly reduced values of fractional anisotropy (FA) and axial diffusivity as well as bilaterally reduced grey matter volume in the insula, compared with controls. After the mHD session, FA further decreased while axial, radial, and mean diffusivity significantly increased ubiquitously throughout the white matter. Voxel-based morphometry revealed a corresponding significant increase in white matter volume in the central right hemisphere and splenium, as well as in cortical grey matter in the anterior medial frontal and cingulate cortex. None of the patients showed neurological deterioration. CONCLUSION: In this study ESRD patients showed white matter changes indicative of chronic microstructural damage when compared with healthy controls, as previously reported. In addition, patients showed signs of a transient extracellular cerebral edema, which has not yet been observed in the absence of neurological symptoms.


Assuntos
Edema Encefálico , Substância Branca , Encéfalo/diagnóstico por imagem , Edema Encefálico/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Diálise Renal/efeitos adversos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...