Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302116

RESUMO

The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Poro Nuclear/genética , Poro Nuclear/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/análise , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38130235

RESUMO

Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Resposta ao Choque Térmico
3.
Sci Adv ; 9(15): eadf1956, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058555

RESUMO

Deficiencies in mitochondrial protein import are associated with a number of diseases. However, although nonimported mitochondrial proteins are at great risk of aggregation, it remains largely unclear how their accumulation causes cell dysfunction. Here, we show that nonimported citrate synthase is targeted for proteasomal degradation by the ubiquitin ligase SCFUcc1. Unexpectedly, our structural and genetic analyses revealed that nonimported citrate synthase appears to form an enzymatically active conformation in the cytosol. Its excess accumulation caused ectopic citrate synthesis, which, in turn, led to an imbalance in carbon flux of sugar, a reduction of the pool of amino acids and nucleotides, and a growth defect. Under these conditions, translation repression is induced and acts as a protective mechanism that mitigates the growth defect. We propose that the consequence of mitochondrial import failure is not limited to proteotoxic insults, but that the accumulation of a nonimported metabolic enzyme elicits ectopic metabolic stress.


Assuntos
Mitocôndrias , Estresse Fisiológico , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/genética
4.
Heliyon ; 9(2): e13219, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36761826

RESUMO

The ubiquitin-specific chaperone AAA-ATPase Cdc48 and its orthologs p97/valosin-containing protein (VCP) in mammals play crucial roles in regulating numerous intracellular pathways via segregase activity, which separates polyubiquitinated targets from membranes or binding partners. Interestingly, high-throughput experiments show that a vast number of metabolic enzymes are modified with ubiquitin. Therefore, Cdc48 may regulate metabolic pathways, for example by acting on the polyubiquitin chains of metabolic enzymes; however, the role of Cdc48 in metabolic regulation remains largely unknown. To begin to analyze the role of Cdc48 in metabolic regulation in yeast, we performed a metabolomics analysis of temperature-sensitive cdc48-3 mutant cells. We found that the amount of metabolites in the glycolytic pathway was altered. Moreover, the pool of nucleotides, as well as the levels of metabolites involved in the tricarboxylic acid cycle and oxidative phosphorylation, increased, whereas the pool of amino acids decreased. These results suggest the involvement of Cdc48 in metabolic regulation in yeast. In addition, because of the roles of p97/VCP in regulating multiple cellular pathways, its inhibition is being considered as a promising anticancer drug target. We propose that the metabolomics study of Cdc48-deficient yeast will be useful as a complement to p97/VCP-related pathological and therapeutic studies.

5.
Biochem Biophys Res Commun ; 626: 85-91, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35981421

RESUMO

Triacylglycerols (TGs) serve as reservoirs for diacylglycerols and fatty acids, which play important roles in synthesizing energy and membrane lipids that are required for cell cycle progression. In the yeast, Saccharomyces cerevisiae, Tgl4, the functional ortholog of murine adipose triacylglycerol lipase (ATGL), is activated by Cdk1/Cdc28-mediated phosphorylation and facilitates the G1/S transition. However, little is known about how Tgl4 is inactivated during the cell cycle. To monitor the phosphorylation status and the stability of endogenous Tgl4, we raised a specific antibody against Tgl4. We found that in contrast to the previous suggestion, Tgl4 was a stable protein throughout the cell cycle. We also showed that Tgl4 was dephosphorylated upon entry into G1 phase. These results suggest that Tgl4 is a stable protein and is inactivated during G1 phase by dephosphorylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Ciclo Celular , Lipase/genética , Lipase/metabolismo , Camundongos , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo
6.
Nat Commun ; 13(1): 2005, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422486

RESUMO

In yeast, mitochondria are passed on to daughter cells via the actin cable, motor protein Myo2, and adaptor protein Mmr1. They are released from the actin-myosin machinery after reaching the daughter cells. We report that Mmr1 is rapidly degraded by the ubiquitin-proteasome system in Saccharomyces cerevisiae. Redundant ubiquitin ligases Dma1 and Dma2 are responsible for Mmr1 ubiquitination. Dma1/2-mediated Mmr1 ubiquitination requires phosphorylation, most likely at S414 residue by Ste20 and Cla4. These kinases are mostly localized to the growing bud and nearly absent from mother cells, ensuring phosphorylation and ubiquitination of Mmr1 after the mitochondria enter the growing bud. In dma1Δ dma2Δ cells, transported mitochondria are first stacked at the bud-tip and then pulled back to the bud-neck. Stacked mitochondria in dma1Δ dma2Δ cells exhibit abnormal morphology, elevated respiratory activity, and increased level of reactive oxygen species, along with hypersensitivity to oxidative stresses. Collectively, spatiotemporally-regulated Mmr1 turnover guarantees mitochondrial homeostasis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
7.
iScience ; 25(3): 103986, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35310337

RESUMO

Ribosome biogenesis (Ribi) is a complex and energy-consuming process, and should therefore be repressed under nutrient-limited conditions to minimize unnecessary cellular energy consumption. In yeast, the transcriptional repressors Dot6 and Tod6 are phosphorylated and inactivated by the TORC1 pathway under nutrient-rich conditions, but are activated and repress ∼200 Ribi genes under nutrient-limited conditions. However, we show that in the presence of rapamycin or under nitrogen starvation conditions, Dot6 and Tod6 were readily degraded by the proteasome in a SCFGrr1 and Tom1 ubiquitin ligase-dependent manner, respectively. Moreover, promiscuous accumulation of Dot6 and Tod6 excessively repressed Ribi gene expression as well as translation activity and caused a growth defect in the presence of rapamycin. Thus, we propose that degradation of Dot6 and Tod6 is a novel mechanism to ensure an appropriate level of Ribi gene expression and thereby fine-tune the repression of Ribi and translation activity for cell survival under nutrient-limited conditions.

8.
Curr Genet ; 68(2): 227-242, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35041076

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for ubiquitination and degradation by the proteasome. During this process, known as ER-associated degradation (ERAD), the ER-embedded Hrd1 ubiquitin ligase plays a central role in recognizing, ubiquitinating, and retrotranslocating scores of lumenal and integral membrane proteins. To better define the mechanisms underlying Hrd1 function in Saccharomyces cerevisiae, several model substrates have been developed. One substrate is Sec61-2, a temperature sensitive allele of the Sec61 translocation channel. Cells expressing Sec61-2 grow at 25 °C because the protein is stable, but sec61-2 yeast are inviable at 38 °C because the mutated protein is degraded in a Hrd1-dependent manner. Therefore, deleting HRD1 stabilizes Sec61-2 and hence sec61-2hrd1∆ double mutants are viable at 38 °C. This unique phenotype allowed us to perform a non-biased screen for loss-of-function alleles in HRD1. Based on its importance in mediating substrate retrotranslocation, the screen was also developed to focus on mutations in sequences encoding Hrd1's transmembrane-rich domain. Ultimately, a group of recessive mutations was identified in HRD1, including an ensemble of destabilizing mutations that resulted in the delivery of Hrd1 to the ERAD pathway. A more stable mutant resided in a buried transmembrane domain, yet the Hrd1 complex was disrupted in yeast expressing this mutant. Together, these data confirm the importance of Hrd1 complex integrity during ERAD, suggest that allosteric interactions between transmembrane domains regulate Hrd1 complex formation, and provide the field with new tools to define the dynamic interactions between ERAD components during substrate retrotranslocation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Seleção Genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Sci Rep ; 11(1): 20880, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686700

RESUMO

Cell adhesion molecule-related/downregulated by oncogenes (Cdon) is a cell-surface receptor that mediates cell-cell interactions and positively regulates myogenesis. The cytoplasmic region of Cdon interacts with other proteins to form a Cdon/JLP/Bnip-2/CDC42 complex that activates p38 mitogen-activated protein kinase (MAPK) and induces myogenesis. However, Cdon complex may include other proteins during myogenesis. In this study, we found that Cullin 2-interacting protein zinc finger SWIM type containing 8 (ZSWIM8) ubiquitin ligase is induced during C2C12 differentiation and is included in the Cdon complex. We knocked-down Zswim8 in C2C12 cells to determine the effect of ZSWIM8 on differentiation. However, we detected neither ZSWIM8-dependent ubiquitination nor the degradation of Bnip2, Cdon, or JLP. In contrast, ZSWIM8 knockdown accelerated C2C12 differentiation. These results suggest that ZSWIM8 is a Cdon complex-included myogenic protein that prevents C2C12 differentiation without affecting the stability of Bnip2, Cdon, and JLP.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células K562 , Sistema de Sinalização das MAP Quinases/fisiologia , Ligação Proteica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494405

RESUMO

Misfolded and/or unassembled secretory and membrane proteins in the endoplasmic reticulum (ER) may be retro-translocated into the cytoplasm, where they undergo ER-associated degradation, or ERAD. The mechanisms by which misfolded proteins are recognized and degraded through this pathway have been studied extensively; however, our understanding of the physiological role of ERAD remains limited. This review describes the biosynthesis and quality control of glycosylphosphatidylinositol (GPI)-anchored proteins and briefly summarizes the relevance of ERAD to these processes. While recent studies suggest that ERAD functions as a fail-safe mechanism for the degradation of misfolded GPI-anchored proteins, several pieces of evidence suggest an intimate interaction between ERAD and the biosynthesis of GPI-anchored proteins.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas Ligadas por GPI/biossíntese , Biossíntese de Proteínas , Saccharomyces cerevisiae/fisiologia , Vias Biossintéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
iScience ; 23(3): 100970, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32200094

RESUMO

The UGA codon signals protein translation termination, but it can also be translated into selenocysteine (Sec, U) to produce selenocysteine-containing proteins (selenoproteins) by dedicated machinery. As Sec incorporation can fail, Sec-containing longer and Sec-lacking shorter proteins co-exist. Cul2-type ubiquitin ligases were recently shown to destabilize such truncated proteins; however, which ubiquitin ligase targets truncated proteins for degradation remained unclear. We report that the Cul5-type ubiquitin ligase KLHDC1 targets truncated SELENOS, a selenoprotein, for proteasomal degradation. SELENOS is involved in endoplasmic reticulum (ER)-associated degradation, which is linked to reactive oxygen species (ROS) production, and the knockdown of KLHDC1 in U2OS cells decreased ER stress-induced cell death. Knockdown of SELENOS increased the cell population with lower ROS levels. Our findings reveal that, in addition to Cul2-type ubiquitin ligases, KLHDC1 is involved in the elimination of truncated oxidoreductase-inactive SELENOS, which would be crucial for maintaining ROS levels and preventing cancer development.

12.
Mol Cell ; 76(1): 191-205.e10, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31445887

RESUMO

Normal mitochondrial functions rely on optimized composition of their resident proteins, and proteins mistargeted to mitochondria need to be efficiently removed. Msp1, an AAA-ATPase in the mitochondrial outer membrane (OM), facilitates degradation of tail-anchored (TA) proteins mistargeted to the OM, yet how Msp1 cooperates with other factors to conduct this process was unclear. Here, we show that Msp1 recognizes substrate TA proteins and facilitates their transfer to the endoplasmic reticulum (ER). Doa10 in the ER membrane then ubiquitinates them with Ubc6 and Ubc7. Ubiquitinated substrates are extracted from the ER membrane by another AAA-ATPase in the cytosol, Cdc48, with Ufd1 and Npl4 for proteasomal degradation in the cytosol. Thus, Msp1 functions as an extractase that mediates clearance of mistargeted TA proteins by facilitating their transfer to the ER for protein quality control.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/enzimologia , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
13.
Biophys J ; 117(4): 668-678, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31399214

RESUMO

Membrane proteins must adopt their proper topologies within biological membranes, but achieving the correct topology is compromised by the presence of marginally hydrophobic transmembrane helices (TMHs). In this study, we report on a new model membrane protein in yeast that harbors two TMHs fused to an unstable nucleotide-binding domain. Because the second helix (TMH2) in this reporter has an unfavorable predicted free energy of insertion, we employed established methods to generate variants that alter TMH2 insertion free energy. We first found that altering TMH2 did not significantly affect the extent of protein degradation by the cellular quality control machinery. Next, we correlated predicted insertion free energies from a knowledge-based energy scale with the measured apparent free energies of TMH2 insertion. Although the predicted and apparent insertion energies showed a similar trend, the predicted free-energy changes spanned an unanticipated narrow range. By instead using a physics-based model, we obtained a broader range of free energies that agreed considerably better with the magnitude of the experimentally derived values. Nevertheless, some variants still inserted better in yeast than predicted from energy-based scales. Therefore, molecular dynamics simulations were performed and indicated that the corresponding mutations induced conformational changes within TMH2, which altered the number of stabilizing hydrogen bonds. Together, our results offer insight into the ability of the cellular quality control machinery to recognize conformationally distinct misfolded topomers, provide a model to assess TMH insertion in vivo, and indicate that TMH insertion energy scales may be limited depending on the specific protein and the mutation present.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Membrana Celular/química , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Dobramento de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Biosci Bioeng ; 128(6): 704-709, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31253511

RESUMO

The ubiquitin-proteasome system plays an important role in metabolic regulation. In a previous study, we reported that, in Saccharomyces cerevisiae, when glucose is available, the SCFUcc1 ubiquitin ligase complex targets citrate synthase 2 (Cit2) for proteasomal degradation, thereby suppressing the glyoxylate cycle, an anabolic pathway that replenishes the TCA cycle with succinate for the activation of gluconeogenesis. However, the roles of Ucc1 in other yeast species remain unclear. Here, we cloned orthologs of the F-box protein Ucc1 from Zygosaccharomyces bailii, an aggressive food spoilage microorganism that is the most acetic acid-tolerant yeast species, and Candida glabrata, an emerging fungal pathogen. These orthologs were expressed in S. cerevisiae, and their activities were tested genetically and biochemically. The results showed that Z. bailii Ucc1 rescued the ucc1Δ phenotype, suggesting the existence of a similar mechanism regulating the glyoxylate cycle in Z. bailii. By contrast, C. glabrata Ucc1 did not complement the ucc1Δ phenotype or exhibit a dominant negative effect on Ucc1. These results suggest the importance of analysing the regulatory mechanisms of glyoxylate cycle in a broad range of yeast species.


Assuntos
Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zygosaccharomyces/metabolismo , Ácido Acético/metabolismo , Proteínas F-Box/genética , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Zygosaccharomyces/genética
15.
Nat Commun ; 10(1): 947, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814508

RESUMO

Dynamic metabolic changes occur in the liver during the transition between fasting and feeding. Here we show that transient ER stress responses in the liver following feeding terminated by Sdf2l1 are essential for normal glucose and lipid homeostasis. Sdf2l1 regulates ERAD through interaction with a trafficking protein, TMED10. Suppression of Sdf2l1 expression in the liver results in insulin resistance and increases triglyceride content with sustained ER stress. In obese and diabetic mice, Sdf2l1 is downregulated due to decreased levels of nuclear XBP-1s, whereas restoration of Sdf2l1 expression ameliorates glucose intolerance and fatty liver with decreased ER stress. In diabetic patients, insufficient induction of Sdf2l1 correlates with progression of insulin resistance and steatohepatitis. Therefore, failure to build an ER stress response in the liver may be a causal factor in obesity-related diabetes and nonalcoholic steatohepatitis, for which Sdf2l1 could serve as a therapeutic target and sensitive biomarker.


Assuntos
Estresse do Retículo Endoplasmático , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Ingestão de Alimentos , Técnicas de Silenciamento de Genes , Intolerância à Glucose , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , Obesidade/metabolismo
16.
FEBS Lett ; 592(10): 1716-1724, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29683484

RESUMO

The ubiquitin-proteasome system plays a crucial role in cell cycle progression. A previous study suggested that Spo12, a component of the Cdc14 early anaphase release (FEAR) network, is targeted for degradation by the APC/CCdh1 complex in G1 phase. In the present study, we demonstrate that the Hect-type ubiquitin ligase Tom1 contributes to the turnover of Spo12 in G2/M phase. Coimmunoprecipitation analysis confirmed that Tom1 and Spo12 interact. Overexpression of Spo12 is cytotoxic in the absence of Tom1. Notably, Spo12 is degraded in S phase even in the absence of Tom1 and Cdh1, suggesting that an additional E3 ligase(s) also mediates Spo12 degradation. Together, we propose that several distinct degradation pathways control the level of Spo12 during the cell cycle.


Assuntos
Divisão Celular , Fase G2 , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Imunoprecipitação , Proteínas Nucleares/química , Proteólise , Fase S , Proteínas de Saccharomyces cerevisiae/química
17.
Mol Biol Cell ; 28(24): 3532-3541, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931592

RESUMO

Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.


Assuntos
Receptor EphB2/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Ubiquitina/metabolismo
18.
Mol Biol Cell ; 28(15): 2076-2090, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539401

RESUMO

Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum-associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Membranas/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Sistemas de Translocação de Proteínas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
19.
PLoS One ; 12(4): e0175593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394947

RESUMO

Ubiquitin ligase von Hippel-Lindau tumor suppressor (pVHL) negatively regulates protein levels of hypoxia-inducible factor-α (HIF-α). Loss of pVHL causes HIF-α accumulation, which contributes to the pathogenesis of von Hippel-Lindau (VHL) disease. In contrast, v-Myb avian myeloblastosis viral oncogene homolog-like 2 (MYBL2; B-Myb), a transcription factor, prevents VHL pathogenesis by regulating gene expression of HIF-independent pathways. Both HIF-α and B-Myb are targets of pVHL-mediated polyubiquitination and proteasomal degradation. Here, we show that knockdown of HIF-2α induces downregulation of B-Myb in 786-O cells, which are deficient in pVHL, and this downregulation is prevented by proteasome inhibition. In the presence of pVHL and under hypoxia-like conditions, B-Myb and HIF-2α are both upregulated, and the upregulation of B-Myb requires expression of HIF-2α. We also show that HIF-2α and B-Myb interact in the nucleus, and this interaction is mediated by the central region of HIF-2α and the C-terminal region of B-Myb. These data indicate that oncogenic HIF-2α stabilizes B-Myb to suppress VHL pathogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transativadores/metabolismo , Proteínas de Ciclo Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Inibidores de Proteassoma/farmacologia , Domínios Proteicos , Estabilidade Proteica , RNA Interferente Pequeno , Transativadores/genética , Regulação para Cima/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
20.
J Cell Biol ; 215(1): 95-106, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697924

RESUMO

Proper dynamic regulation of the spindle is essential for successful cell division. However, the molecular mechanisms that regulate spindle dynamics in mitosis are not fully understood. In this study, we show that Cullin 5-interacting suppressor of cytokine signaling box protein ASB7 ubiquitinates DDA3, a regulator of spindle dynamics, thereby targeting it for proteasomal degradation. The presence of microtubules (MTs) prevented the ASB7-DDA3 interaction, thus stabilizing DDA3. Knockdown of ASB7 decreased MT polymerization and increased the proportion of cells with unaligned chromosomes, and this phenotype was rescued by deletion of DDA3. Collectively, these data indicate that ASB7 plays a crucial role in regulating spindle dynamics and genome integrity by controlling the expression of DDA3.


Assuntos
Anquirinas/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fuso Acromático/metabolismo , Ciclo Celular , Divisão Celular , Proteínas Culina/metabolismo , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA