Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 611: 146-150, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489200

RESUMO

Netrin-1, the protein product of the NTN1 gene, is an axon guidance molecule implicated in regulation of cell survival and tumorigenesis. Expression of the netrin-1 receptors deleted in colorectal cancer (DCC) and uncoordinated 5 homolog (UNC5H) is frequently silenced in colorectal cancer (CRC) by either loss of heterozygosity or epigenetic mechanisms. However, netrin-1 expression and regulation in CRC are mostly unknown. Here, we report that NTN1 expression is significantly reduced in most CRC tissues compared to the adjacent normal intestinal mucosa, and that NTN1 DNA methylation is significantly higher in CRCs (24.6%) than in the adjacent normal intestinal mucosa (4.0%). In 6 CRC cell lines, NTN1 expression is low. Treatment with 5-Aza-2'-deoxycytidine increased expression of NTN1 in CRC cell lines, indicating that DNA methylation represses NTN1 transcription in CRCs. NTN1 DNA hypermethylation was significantly associated with advanced CRC disease. Median netrin-1 serum levels were significantly decreased in CRC patients (330.1 pg/mL) compared with normal individuals (438.6 pg/mL). Our results suggest that netrin-1 is a candidate biomarker for CRC.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Netrina-1 , Orientação de Axônios , Neoplasias Colorretais/genética , Humanos , Receptores de Netrina/genética , Netrina-1/genética
2.
Sci Rep ; 11(1): 9552, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953303

RESUMO

A disintegrin and metalloprotease 17 (ADAM17) is the major sheddase that processes more than 80 substrates, including tumour necrosis factor-α (TNFα). The homozygous genetic deficiency of ADAM17 causing a complete loss of ADAM17 expression was reported to be linked to neonatal inflammatory skin and bowel disease 1 (NISBD1). Here we report for the first time, a family with NISBD1 caused by functionally confirmed compound heterozygous missense variants of ADAM17, namely c.1699T>C (p.Cys567Arg) and c.1799G>A (p.Cys600Tyr). Both variants were detected in two siblings with clinical features of NISBD1, such as erythroderma with exudate in whole body, recurrent skin infection and sepsis and prolonged diarrhoea. In a cell-based assay using Adam10/17 double-knockout mouse embryonic fibroblasts (Adam10/17-/- mEFs) exogenously expressing each of these mutants, phorbol 12-myristate 13-acetate-stimulated shedding was strongly reduced compared with wild-type ADAM17. Thus, in vitro functional assays demonstrated that both missense variants cause the loss-of-function of ADAM17, resulting in the development of NISBD1. Our study further expands the spectrum of genetic pathology underlying ADAM17 in NISBD1 and establishes functional assay systems for its missense variants.


Assuntos
Proteína ADAM17/genética , Doenças do Recém-Nascido/genética , Doenças Inflamatórias Intestinais/genética , Dermatopatias/genética , Animais , Feminino , Células HEK293 , Heterozigoto , Humanos , Recém-Nascido , Masculino , Camundongos , Mutação de Sentido Incorreto , Mutação Puntual
3.
Molecules ; 26(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379243

RESUMO

Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Peróxido de Hidrogênio/farmacologia , Substâncias Protetoras/farmacologia , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Dactinomicina/farmacologia , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Feocromocitoma/tratamento farmacológico , Feocromocitoma/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Sci Rep ; 10(1): 188, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932617

RESUMO

Anosmin-1 is a secreted glycoprotein encoded by the ANOS1 gene, and its loss of function causes Kallmann syndrome (KS), which is characterized by anosmia and hypogonadism due to olfactory bulb (OB) dysfunction. However, the physiological function of anosmin-1 remains to be elucidated. In KS, disordered angiogenesis is observed in OB, resulting in its hypoplasia. In this study, we examined the involvement of anosmin-1 in angiogenic processes. Anosmin-1 was detected on the vessel-like structure in OB of chick embryos, and promoted the outgrowth of vascular sprouts as shown by assays of OB tissue culture. Cell migration, proliferation, and tube formation of endothelial cells were induced by treatment with anosmin-1 as well as vascular endothelial growth factor-A (VEGF-A), and further enhanced by treatment with both of them. We newly identified that anosmin-1 activated VEGF receptor-2 (VEGFR2) by binding directly to it, and its downstream signaling molecules, phospholipase Cγ1 (PLCγ1) and protein kinase C (PKC). These results suggest that anosmin-1 plays a key role in the angiogenesis of developing OB through the VEGFR2-PLCγ1-PKC axis by enhancing the VEGF function.


Assuntos
Endotélio Vascular/citologia , Proteínas da Matriz Extracelular/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Bulbo Olfatório/irrigação sanguínea , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Proteínas da Matriz Extracelular/genética , Humanos , Morfogênese , Proteínas do Tecido Nervoso/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
5.
Front Physiol ; 9: 1662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532711

RESUMO

Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.

6.
Biochem Biophys Res Commun ; 499(1): 17-23, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29550478

RESUMO

A disintegrin and metalloproteinase (ADAM) family are crucial enzymes for ectodomain shedding of multiple substrates and are involved in diverse biologic and pathologic processes. However, the molecular mechanism underlying substrate selectivity of ADAMs is poorly understood. In this study, we observed that disruption of actin polymerization by pharmacological inhibitors, latrunculin A (LatA) and cytochalasin D (CyD), induced ectodomain shedding of epidermal growth factor (EGF) family ligands. Induced shedding activity by LatA or CyD was suppressed by a metalloprotease inhibitor KB-R7785, indicating that ADAMs-mediated shedding is tightly controlled by actin cytoskeleton. We also investigated roles of cullin family, a component of cullin-RING based E3 ubiquitin ligases, in ectodomain shedding, since cullin family is implicated in the regulation of cytoskeletal dynamics. Knockdown of cullin 3 (Cul3) by a specific siRNA inhibited ectodomain shedding of amphiregulin (AREG), a member of EGF family, and responses were associated with activation of RhoA GTPase and induction of stress fiber formation. On the other hand, the RhoA inhibitor C3 transferase rescued AREG shedding reduced by Cul3 knockdown. These results describe a novel molecular mechanism of Cul3 to regulate AREG shedding by modulating cytoskeletal dynamics in a RhoA dependent manner.


Assuntos
Proteína ADAM17/genética , Citoesqueleto de Actina/metabolismo , Anfirregulina/genética , Proteínas Culina/genética , Fibroblastos/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/metabolismo , ADP Ribose Transferases/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Anfirregulina/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/antagonistas & inibidores , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proteínas Culina/antagonistas & inibidores , Proteínas Culina/metabolismo , Citocalasina D/antagonistas & inibidores , Citocalasina D/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Tiazolidinas/antagonistas & inibidores , Tiazolidinas/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 38(1): 174-185, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191924

RESUMO

OBJECTIVE: The incidence of blindness is increasing because of the increase in abnormal ocular neovascularization. Anti-VEGF (vascular endothelial growth factor) therapies have led to good results, although they are not a cure for the blindness. The purpose of this study was to determine what role HB-EGF (heparin-binding epidermal growth factor-like growth factor) plays in ocular angiogenesis. APPROACH AND RESULTS: We examined the role played by HB-EGF in ocular neovascularization in 2 animal models of neovascularization: laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy. We also studied human retinal microvascular endothelial cells in culture. Our results showed that the neovascularization was decreased in both the CNV and oxygen-induced retinopathy models in HB-EGF conditional knockout mice compared with that in wild-type mice. Moreover, the expressions of HB-EGF and VEGF were increased after laser-induced CNV and oxygen-induced retinopathy, and their expression sites were located around the neovascular areas. Exposure of human retinal microvascular endothelial cells to HB-EGF and VEGF increased their proliferation and migration, and CRM-197 (cross-reactive material-197), an HB-EGF inhibitor, decreased the HB-EGF-induced and VEGF-induced cell proliferation and migration. VEGF increased the expression of HB-EGF mRNA. VEGF-dependent activation of EGFR (epidermal growth factor receptor)/ERK1/2 (extracellular signal-regulated kinase 1/2) signaling and cell proliferation of endothelial cells required stimulation of the ADAM17 (a disintegrin and metalloprotease) and ADAM12. CRM-197 decreased the grades of the fluorescein angiograms and size of the CNV areas in marmoset monkeys. CONCLUSIONS: These findings suggest that HB-EGF plays an important role in the development of CNV. Therefore, further investigations of HB-EGF are needed as a potential therapeutic target in the treatment of exudative age-related macular degeneration.


Assuntos
Comunicação Autócrina , Neovascularização de Coroide/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Neovascularização Patológica , Comunicação Parácrina , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Callithrix , Movimento Celular , Proliferação de Células , Células Cultivadas , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Neovascularização de Coroide/prevenção & controle , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/deficiência , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Camundongos Knockout , Comunicação Parácrina/efeitos dos fármacos , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Biochem ; 162(4): 237-245, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981750

RESUMO

Tissue remodelling and regeneration in various pathophysiological conditions (e.g. the processes of development, pregnancy, inflammation, wound healing, tissue regeneration, tumor growth, etc.) require angiogenesis, a dynamically coordinated response to stimuli from the extracellular microenvironment. During angiogenic and angiostatic responses, endothelial cells play a central role in the blood vessel formation and regression. Angiostatic responses, which are evoked by crucial factors such as VEGF and DLL4, have been elucidated. However, it has not been revealed, how endothelial cells process these conflicting signals. The study of VEGFR-Notch cross-signalling provided some clues. We discuss here the potential roles of cullin 3-based ubiquitin E3 ligases as key players in the process of various signals in endothelial cell function and angiogenesis. Our recent findings show that they function as units to process conflicting signalling crosstalk, epigenetic regulation of key factors, and functional barrier maintenance. We also expect more divergent roles of cullin 3-based ubiquitin E3 ligases in endothelial cell function and angiogenesis, and for their potential use as therapeutic targets.


Assuntos
Proteínas Culina/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Células Endoteliais/patologia , Humanos , Neovascularização Patológica/patologia
10.
PLoS One ; 12(5): e0177343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486557

RESUMO

The acidic (leucine-rich) nuclear phosphoprotein 32 family member B (ANP32B), a highly conserved member of the acidic nuclear phosphoprotein 32 (ANP32) family, is critical for the development of normal tissue. However, its role in the development of hepatocellular carcinoma (HCC) is controversial. In this study, we elucidated the role of ANP32B in HCC cell lines and tissues. ANP32B expression in HCC cell lines was modulated using siRNA and ANP32B expression plasmids and lentiviruses. The levels of apoptosis-related proteins were analyzed by real-time RT-PCR and Western blotting. The expression of ANP32B in tissues from patients with HCC was investigated using real-time RT-PCR and immunohistochemistry. ANP32B knockdown by siRNA altered the expression of apoptosis-related proteins in HCC cell lines and reduced the expression of cleaved forms of caspase 3 and caspase 9, but not that of caspase 8, in HCC cells cultured with the pro-apoptotic agent staurosporine. Phosphorylated Bad was upregulated, whereas Bak was downregulated. Moreover, ABT-737, which binds to and inhibits anti-apoptotic proteins of the Bcl-2 family, rendered HCC cells resistant to apoptosis induced by ANP32B silencing. Conversely, ANP32B overexpression decreased Bad phosphorylation and upregulated Bak, but did not induce apoptosis because Bax expression was downregulated. In tissues from patients with HCC, a low tumor/non-tumor ratio of ANP32B mRNA expression was related to advanced UICC stage (p = 0.032). TUNEL-positive cells were observed in parallel with ANP32B expression in HCC tissues. ANP32B modulates Bad phosphorylation as well as Bak and Bax expression, resulting in regulation of apoptosis in HCC. These findings indicate the potential value of ANP32B as a therapeutic target for HCC.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Regulação para Baixo , Neoplasias Hepáticas/patologia , Proteínas Nucleares/fisiologia , Western Blotting , Carcinoma Hepatocelular/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Hepáticas/metabolismo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
11.
Cancer Sci ; 108(2): 208-215, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987332

RESUMO

Vascular endothelial (VE)-cadherin, a major endothelial adhesion molecule, regulates vascular permeability, and increased vascular permeability has been observed in several cancers. The aim of this study was to elucidate the role of the NEDD8-Cullin E3 ligase, in maintaining barrier permeability. To this end, we investigated the effects of the inhibition of Cullin E3 ligases, by using inhibitors and knockdown techniques in HUVECs. Furthermore, we analyzed the mRNA and protein levels of the ligases by quantitative RT-PCR and Western blotting, respectively. The results revealed that NEDD8-conjugated Cullin 3 is required for VE-cadherin-mediated endothelial barrier functions. Treatment of HUVECs with MLN4924, a chemical inhibitor of the NEDD8-activating enzyme, led to high vascular permeability due to impaired cell-cell contact. Similar results were obtained when HUVECs were treated with siRNA directed against Cullin 3, one of the target substrates of NEDD8. Immunocytochemical staining showed that both treatments equally depleted VE-cadherin protein localized at the cell-cell borders. However, quantitative RT-PCR showed that there was no significant difference in the VE-cadherin mRNA levels between the treatment and control groups. In addition, cycloheximide chase assay revealed that the half-life of VE-cadherin protein was dramatically reduced by Cullin 3 depletion. Together, these findings suggest that neddylated Cullin 3 plays a crucial role in endothelial cell barrier function by regulating VE-cadherin.


Assuntos
Antígenos CD/fisiologia , Caderinas/fisiologia , Permeabilidade Capilar/fisiologia , Proteínas Culina/fisiologia , Endotélio Vascular/fisiologia , Ubiquitinas/fisiologia , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Caderinas/efeitos dos fármacos , Caderinas/genética , Permeabilidade Capilar/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Proteínas Culina/análise , Proteínas Culina/antagonistas & inibidores , Cicloeximida/farmacologia , Ciclopentanos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína NEDD8 , Inibidores da Síntese de Proteínas , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ubiquitinas/análise
12.
Curr Opin Organ Transplant ; 22(1): 55-63, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27898465

RESUMO

PURPOSE OF REVIEW: Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS: The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY: Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.


Assuntos
Rejeição de Enxerto/imunologia , Tolerância Imunológica/imunologia , Humanos , Microambiente Tumoral
13.
J Immunol ; 197(4): 1389-98, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27430720

RESUMO

Netrin-1 is a neuronal guidance cue that regulates cellular activation, migration, and cytoskeleton rearrangement in multiple cell types. It is a chemotropic protein that is expressed within tissues and elicits both attractive and repulsive migratory responses. Netrin-1 has recently been found to modulate the immune response via the inhibition of neutrophil and macrophage migration. However, the ability of Netrin-1 to interact with lymphocytes and its in-depth effects on leukocyte migration are poorly understood. In this study, we profiled the mRNA and protein expression of known Netrin-1 receptors on human CD4(+) T cells. Neogenin, uncoordinated-5 (UNC5)A, and UNC5B were expressed at low levels in unstimulated cells, but they increased following mitogen-dependent activation. By immunofluorescence, we observed a cytoplasmic staining pattern of neogenin and UNC5A/B that also increased following activation. Using a novel microfluidic assay, we found that Netrin-1 stimulated bidirectional migration and enhanced the size of migratory subpopulations of mitogen-activated CD4(+) T cells, but it had no demonstrable effects on the migration of purified CD4(+)CD25(+)CD127(dim) T regulatory cells. Furthermore, using a short hairpin RNA knockdown approach, we observed that the promigratory effects of Netrin-1 on T effectors is dependent on its interactions with neogenin. In the humanized SCID mouse, local injection of Netrin-1 into skin enhanced inflammation and the number of neogenin-expressing CD3(+) T cell infiltrates. Neogenin was also observed on CD3(+) T cell infiltrates within human cardiac allograft biopsies with evidence of rejection. Collectively, our findings demonstrate that Netrin-1/neogenin interactions augment CD4(+) T cell chemokinesis and promote cellular infiltration in association with acute inflammation in vivo.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiotaxia de Leucócito/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Western Blotting , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas In Vitro , Camundongos , Camundongos SCID , Técnicas Analíticas Microfluídicas , Receptores de Netrina , Netrina-1 , Reação em Cadeia da Polimerase em Tempo Real
14.
J Biol Chem ; 291(20): 10490-500, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26966180

RESUMO

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis.


Assuntos
Glicoproteínas/metabolismo , Vasos Linfáticos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Animais , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Glicoproteínas/genética , Humanos , Linfangiogênese/fisiologia , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Psoríase/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas de Transporte Vesicular/genética
15.
Sci Rep ; 6: 20209, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26831618

RESUMO

Epithelial cell plasticity is controlled by extracellular cues, but the underlying mechanisms remain to be fully understood. Epidermal growth factor (EGF) and amphiregulin (AREG) are high- and low-affinity ligands for EGF receptor (EGFR), respectively. EGFR signaling is known to promote epithelial-mesenchymal transition (EMT) by the activation of ERK and the induction of an EMT transcription factor, ZEB1. Here, we demonstrate that ligand-switching between EGF and AREG at equivalent molarity reversibly interconverts epithelial and mesenchymal-like states of EGFR signal-dependent mammary epithelial cells. The EGF- and AREG-cultured cells also differ in their epithelial characteristics, including the expression of cell surface markers, the mode of migration and the ability for acinus-formation. The ligand-switching between EGF and AREG temporally alters strength of the shared EGFR-ERK signaling. This alteration inverts relative expression levels of ZEB1 and its antagonizing microRNAs, miR-205 and miR-200c, those are critical determinants of the epithelial phenotype. Further, AREG-induced EGFR accumulation on the plasma membrane compensates for the weak association between AREG and EGFR. The EGFR dynamics enables AREG to support proliferation as efficiently as EGF at equivalent molarity and to maintain epithelial characteristics. Our findings reveal a role of EGFR ligands-generated signal strength in the regulation of mammary epithelial cell plasticity.


Assuntos
Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Ligantes , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Anfirregulina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Glândulas Mamárias Humanas/patologia , Fenótipo , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Am J Pathol ; 186(4): 1055-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26877262

RESUMO

Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Epitélio/metabolismo , Neoplasias Bucais/metabolismo , Receptores da Neurocinina-1/metabolismo , Neoplasias Cutâneas/metabolismo , Carcinoma in Situ/metabolismo , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Epitélio/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Regulação para Cima
17.
Pediatr Nephrol ; 31(1): 41-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25903640

RESUMO

Advances in therapeutics have dramatically improved short-term graft survival, but the incidence of chronic rejection has not changed in the past 20 years. New insights into mechanism are sorely needed at this time and it is hoped that the development of predictive biomarkers will pave the way for the emergence of preventative therapeutics. In this review, we discuss a paradigm suggesting that sequential changes within graft endothelial cells (EC) lead to an intragraft microenvironment that favors the development of chronic rejection. Key initial events include EC injury, activation and uncontrolled leukocyte-induced angiogenesis. We propose that all of these early changes in the microvasculature lead to abnormal blood flow patterns, local tissue hypoxia, and an associated overexpression of HIF-1α-inducible genes, including vascular endothelial growth factor. We also discuss how cell intrinsic regulators of mTOR-mediated signaling within EC are of critical importance in microvascular stability and may thus have a role in the inhibition of chronic rejection. Finally, we discuss recent findings indicating that miRNAs may regulate EC stability, and we review their potential as novel non-invasive biomarkers of allograft rejection. Overall, this review provides insights into molecular events, genes, and signals that promote chronic rejection and their potential as biomarkers that serve to support the future development of interruption therapeutics.


Assuntos
Células Endoteliais/metabolismo , Rejeição de Enxerto/etiologia , Transplante de Rim/efeitos adversos , Rim/irrigação sanguínea , Microvasos/metabolismo , Pesquisa Translacional Biomédica , Aloenxertos , Animais , Biomarcadores/metabolismo , Microambiente Celular , Doença Crônica , Células Endoteliais/imunologia , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/fisiopatologia , Sobrevivência de Enxerto , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Microvasos/imunologia , Microvasos/fisiopatologia , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
18.
Sci Rep ; 5: 11789, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26156437

RESUMO

Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas de Membrana/genética , Camundongos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Biochem Biophys Res Commun ; 464(1): 126-32, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26086095

RESUMO

Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1(+)) endothelial cells (designated as GLUT1(sel) cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH.


Assuntos
Células Endoteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Proteínas do Tecido Nervoso/farmacologia , Semaforinas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hemangioma/irrigação sanguínea , Hemangioma/genética , Hemangioma/patologia , Humanos , Lactente , Neoplasias de Tecido Vascular/irrigação sanguínea , Neoplasias de Tecido Vascular/genética , Neoplasias de Tecido Vascular/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Br J Pharmacol ; 172(16): 4107-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25989290

RESUMO

BACKGROUND AND PURPOSE: Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. EXPERIMENTAL APPROACH: Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo chicken chorioallantoic membrane (CAM) assay along with the assessment of the effect of LPI on proliferation, network formation, and migration of neonatal and adult human endothelial colony-forming cells (ECFCs). Engagement of GPR55 was verified by using its pharmacological inhibitor CID16020046 and diminution of GPR55 expression by four different target-specific siRNAs. To study underlying signal transduction, Western blot analysis was performed. KEY RESULTS: Ovarian carcinoma cell-derived LPI stimulated angiogenesis in the CAM assay. Applied LPI stimulated proliferation, network formation, and migration of neonatal ECFCs in vitro and angiogenesis in the in vivo CAM. The pharmacological GPR55 inhibitor CID16020046 inhibited LPI-stimulated ECFC proliferation, network formation and migration in vitro as well as ovarian carcinoma cell- and LPI-induced angiogenesis in vivo. Four target-specific siRNAs against GPR55 prevented these effects of LPI on angiogenesis. These pro-angiogenic effects of LPI were transduced by GPR55-dependent phosphorylation of ERK1/2 and p38 kinase. CONCLUSIONS AND IMPLICATIONS: We conclude that inhibiting the pro-angiogenic LPI/GPR55 pathway appears a promising target against angiogenesis in ovarian carcinoma.


Assuntos
Lisofosfolipídeos/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...