Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 115(5): 1703-1711, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35640235

RESUMO

Since many noctuid moth species are highly destructive crop pests, it is essential to establish proper management strategies, which primarily require accurate and rapid species identification. However, diagnosis of noctuid species in the field, particularly at the larval stage, is very difficult due to their morphological similarity and individual color variation. In particular, caterpillars of Spodoptera exigua (Hübner), Spodoptera litura (Fabricius), Spodoptera frugiperda (Smith), and Mamestra brassicae (L.) (Lepidoptera: Noctuidae) are hard to be identified by morphology and frequently found on the same host crops in the same season, thus requiring a reliable species diagnosis method. To efficiently diagnose these species, we identified species-specific internal transcribed spacer 1 (ITS1) sequences and developed two molecular species diagnosis protocols using ITS1 markers. The first protocol was multiplex conventional PCR in conjunction with subsequent gel electrophoresis for species identification based on amplicon size. The second protocol was based on multiplex real-time PCR using fluorescent dye-labeled primers for single-step diagnosis. Template genomic DNA (gDNA) prepared by the DNA release method was also suitable for both protocols as the template prepared by DNA extraction. The two protocols enabled rapid and robust species diagnosis using a single multiplex PCR step. Depending on laboratory instrumentation, one of the two protocols can be easily adapted for species diagnosis of the four noctuid caterpillars in the field, which is essential for establishing proper management strategies. The multiplex real-time PCR protocol, in particular, will facilitate accurate diagnosis of the four species in a single step regardless of template gDNA quality.


Assuntos
Mariposas , Reação em Cadeia da Polimerase Multiplex , Animais , Corantes Fluorescentes , Larva/genética , Mariposas/genética , Spodoptera/genética
2.
Pestic Biochem Physiol ; 182: 105033, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249654

RESUMO

The cotton aphid or melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a polyphagous insect pest with a wide host range. Two distinct genetic clusters were found in A. gossypii populations in Korea. To determine whether the division of the genetic clusters was driven by insecticide selection pressure, the frequencies of insecticide resistance-associated mutations on three representative insecticide target genes [i.e., nicotinic acetylcholine receptor gene (nAChR), voltage-gated sodium channel gene (vgsc), and acetylcholinesterase 1 gene (ace-1)] were predicted in A. gossypii populations with known genetic structures. Most populations revealed heterozygosity-resistant alleles for the nAChR R81T and vgsc M918L mutations, but homozygous-resistant alleles for the ace-1 S431F mutation. However, assessment of the three mutation frequencies revealed no apparent correlation between the genetic structures and the resistance profiles. The regression analysis revealed no correlation between the genetic cluster ratios and resistance allele frequencies (R81T, S431F, and M918L). We used three insecticides that are commonly used in greenhouses: imidacloprid (neonicotinoid), acephate (organophosphate), and esfenvalerate (pyrethroid), to test resistance and susceptibility in A. gossypii populations. The bioassay results revealed that the BS_19 (Busan) and JE_19 (Jeongeup) populations were resistant to imidacloprid and acephate, the HS_19 (Honseong) population was resistant to acephate and esfenvalerate, and susceptible lab strains only exhibited resistance to acephate. The bioassay results were correlated with mutation frequency, but no correlation was detected among genetic clusters. These results suggest that the distinct genetic structure observed in the Korean populations of A. gossypii is not likely influenced by insecticide resistance traits, but rather by other factors.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Afídeos/genética , Afídeos/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Receptores Nicotínicos/genética
3.
Insects ; 12(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680652

RESUMO

Molecular-based species identification tools are helpful to identify tiny insect and lepidopteran pests that show morphological similarities in the larval stage and are essential for quarantine as well as agricultural research. Here, we focused on four major Spodoptera pests: S. exigua, S. frugiperda, S. litura, and S. littoralis. S. exigua and S. litura mitochondrial genome sequences were newly identified and species-specific sequence regions were identified in the cytochrome c oxidase subunit II and III regions. Species primers were designed and applied in loop-mediated isothermal amplification (LAMP) and PCR to identify Korean field-collected or overseas samples. The optimal incubation conditions for LAMP were 61 °C for 60 min with four LAMP primers. Additional loop primers increased the amplification efficiency for S. exigua, and the nonspecific amplification for other species. The LAMP assay could detect a wide range of DNA concentrations, with the range 1 ng-1 pg in dependence of four LAMP primers. The DNA-releasing technique, without DNA extraction, in the LAMP assay involved larval or adult tissue sample incubation at 95 °C for 5 min. The entire process takes approximately 70 min. This new molecular diagnostic method is simple and accurate, with application in the field and laboratory and for monitoring and ecological studies.

4.
PLoS One ; 16(6): e0250786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081692

RESUMO

Tartary buckwheat (Fagopyrum tataricum Gartn.) is a highly functional crop that is poised to be the target of many future breeding efforts. The reliable ex situ conservation of various genetic resources is essential for the modern breeding of tartary buckwheat varieties. We developed PCR-based co-dominant insertion/deletion (InDel) markers to discriminate tartary buckwheat genetic resources. First, we obtained the whole genome from 26 accessions across a superscaffold-scale reference genome of 569.37 Mb for tartary buckwheat cv. "Daegwan 3-7." Next, 171,926 homogeneous and 53,755 heterogeneous InDels were detected by comparing 26 accessions with the "Daegwan 3-7" reference sequence. Of these, 100 candidate InDels ranging from 5-20 bp in length were chosen for validation, and 50 of them revealed polymorphisms between the 26 accessions and "Daegwan 3-7." The validated InDels were further tested through the assessment of their likelihood to give rise to a single or a few PCR products in 50 other accessions, covering most tartary buckwheat genome types. The major allele frequencies ranged from 0.5616 at the TB42 locus to 0.9863 at the TB48 locus, with the average PIC value of 0.1532 with a range of 0.0267-0.3712. To create a user-friendly system, the homology of the genotypes between and among the accessions were visualized in both one- (1D) and two-dimensional (2D) barcode types by comparing amplicon polymorphisms with the reference variety, "Daegwan 3-7." A phylogenetic tree and population structure of the 76 accessions according to amplicon polymorphisms for the 50 InDel markers corresponded to those using non-synonymous single nucleotide polymorphism variants, indicating that the barcode system based on the 50 InDels was a useful tool to improve the reliability of identification of tartary buckwheat accessions in the germplasm stocks.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Fagopyrum/classificação , Fagopyrum/genética , Genoma de Planta/genética , Grão Comestível/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Marcadores Genéticos/genética , Mutação INDEL/genética , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
5.
Insects ; 11(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228220

RESUMO

The Mythimna loreyi (Duponchel) is one of the well-known invasive noctuid pests in Africa, Australia, and many Asian countries. However, it is difficult to identify the invasive and morphologically similar species, Mythimna separate, which occur at the cornfield in the larvae stage. Currently, the molecular biology method for diagnosing M. loreyi species is only using the mtCO1 universal primer (LCO1490, HCO2198), which requires a lot of time and effort, such as DNA extraction, PCR, electrophoresis, and sequencing. In this study, the LAMP assay was developed for rapid, simple, effective species identification. By analyzing the mitochondrial genome, the species-specific sequence was found at the coding region of the NADH dehydrogenase subunit 5 gene. Based on this unique sequence, four LAMP primers and two loop primers were designed. The F3 and B3 primers were able to diagnose species-specific, in general, and multiplex PCR and specifically reacted within the inner primers in LAMP assay. The optimal incubation condition of the LAMP assay was 61 °C for 60 min with four LAMP primers, though additional loop primers, BF and LF, did not significantly shorten the amplification time. The broad range of DNA concentration was workable in LAMP assay, in which the minimum detectable DNA concentration was 100 pg. DNA releasing method was applied, which took five minutes of incubation at 95 °C without the DNA extraction process. Only some pieces of tissue of larvae and adult samples were needed to extract DNA. The incidence of invasive pests is gradually diversifying. Therefore, this simple and accurate LAMP assay is possibly applied in the intensive field monitoring for invasive pests and integrated management of Mythimna loreyi.

6.
Insects ; 10(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561591

RESUMO

Aphis gossypii Glover (Hemiptera: Aphididae) is a serious polyphagous agricultural pest worldwide. In the present study, we used eight microsatellite markers to investigate the genetic structure and diversity of A. gossypii populations in Korea. Samples were collected from 37 locations in Korea (18 populations in 2016, 14 populations in 2017, and five populations in 2018) from pepper plants. A. gossypii had low to moderate genetic diversity, and expected heterozygosity (HE) ranged from 0.354 to 0.719. A Mantel test of isolation by distance indicated no relationship between genetic structure and geographic distance among all populations (r2 = 0.0004, p = 0.370), suggesting high gene flow among populations in Korea. Populations of A. gossypii in Korea were divided into two distinct genetic clusters (ΔK = 2). In 2016 and 2017, the genetic clusters changed into opposite genetic structures within one year mostly in northwest and southeast parts of Korea. Possible relevance of study results was discussed. Chemical control, cyclical parthenogenesis, and immigrants from the exterior might have resulted in this low genetic diversity and opposite genetic clusters.

7.
PLoS One ; 14(7): e0220327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344119

RESUMO

The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural pest that causes economic damages worldwide. In particular, B. tabaci MED (Mediterranean) has resulted in serious economic losses in tomato production of Korea. In this study, 1,145 B. tabaci MED females from 35 tomato greenhouses in different geographic regions were collected from 2016 to 2018 (17 populations in 2016, 13 in 2017, and five in 2018) and analyzed to investigate their population genetic structures using eight microsatellite markers. The average number of alleles per population (NA) ranged from 2.000 to 5.875, the expected heterozygosity (HE) ranged from 0.218 to 0.600, the observed heterozygosity (HO) ranged from 0.061 to 0.580, and the fixation index inbreeding coefficient (FIS) ranged from -0.391 to 0.872 over the three years of the study. Some significant correlation (p < 0.05) was present between genetic differentiations (FST) and geographical distance, and a comparatively high proportion of variation was found among the B. tabaci MED populations. The B. tabaci MED populations were divided into two well-differentiated genetic clusters within different geographic regions. Interestingly, its genetic structures converged into one genetic cluster during just one year. The reasons for this genetic change were speculated to arise from different fitness, insecticide resistance, and insect movement by human activities.


Assuntos
Variação Genética , Hemípteros/genética , Agricultura , Migração Animal/fisiologia , Animais , Aptidão Genética/fisiologia , Genética Populacional , Hemípteros/classificação , Atividades Humanas , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Ipomoea batatas/parasitologia , Solanum lycopersicum/parasitologia , Repetições de Microssatélites/genética , República da Coreia
8.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26163593

RESUMO

The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats) have been widely used to determine the origins and genetic diversity of insect pests. We identified novel microsatellite loci for S. furcifera samples collected from Laos, Vietnam, and three localities in Bangladesh from next-generation Roche 454 pyrosequencing data. Size polymorphism at 12 microsatellite loci was verified for 40 adult individuals collected from Shinan, South Korea. The average number of alleles per locus was 7.92. The mean values of observed (H(o)) and expected heterozygosities (H(E)) were 0.615 and 0.757, respectively. These new microsatellite markers will be a resource for future ecological genetic studies of S. furcifera samples across more broad geographic regions in Asia and may assist in estimations of genetic differentiation and gene flow among populations for implementation of more effective management strategies to control this serious rice pest.


Assuntos
Hemípteros/genética , Repetições de Microssatélites , Polimorfismo Genético , Animais , Sudeste Asiático , Bangladesh , Hemípteros/metabolismo , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA