Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Yeast ; 34(6): 239-251, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28160314

RESUMO

The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.


Assuntos
Acetiltransferases/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetiltransferases/isolamento & purificação , Clonagem Molecular , Cromatografia Gasosa-Espectrometria de Massas , Proteínas/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
2.
Biochim Biophys Acta ; 1866(2): 151-162, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27497601

RESUMO

Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells. It has been reported to alter the bioenergetics of tumor cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggested that it also inhibited l-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Recent studies have demonstrated that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5µM) and cooperatively inhibits l-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill coefficient values of 36-40µM and 1.65-1.85, respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~7µM) than other substrates including glutamate (IC50~20µM). LND inhibits the succinate-ubiquinone reductase activity of respiratory Complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through Complex II and has been reported to promote cell death by suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated l-lactic acid efflux, Complex II and glutamine/glutamate oxidation.


Assuntos
Antineoplásicos/farmacologia , Indazóis/farmacologia , Animais , Hexoquinase/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Indazóis/toxicidade , Proteínas de Membrana Transportadoras/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
3.
Nat Commun ; 7: 11926, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305972

RESUMO

Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na(+)/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 µM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials.


Assuntos
Proteínas de Transporte/genética , Diatomáceas/metabolismo , Ácido Silícico/metabolismo , Silício/metabolismo , Sequência de Aminoácidos , Evolução Biológica , Transporte Biológico , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Clonagem Molecular , Bases de Dados Genéticas , Diatomáceas/classificação , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Acetato de Zinco/farmacologia , Sulfato de Zinco/farmacologia
4.
Biochem J ; 473(7): 929-36, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831515

RESUMO

Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 µM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 µM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 µM) than other substrates including glutamate (IC50~ 20 µM). In isolated DB-1 melanoma cells 1-10 µM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 µM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC).


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Membrana Celular/metabolismo , Indazóis/farmacologia , Proteínas de Membrana Transportadoras , Proteínas Mitocondriais/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/genética , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Ácido Láctico/metabolismo , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Proteínas Carreadoras de Solutos , Simportadores/genética , Simportadores/metabolismo
5.
Biochem J ; 466(1): 177-88, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437897

RESUMO

The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.


Assuntos
Ácido Láctico/química , Transportadores de Ácidos Monocarboxílicos/química , Proteínas Musculares/química , Simportadores/química , Tiofenos/química , Uracila/análogos & derivados , Substituição de Aminoácidos , Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Feminino , Expressão Gênica , Humanos , Ácido Láctico/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/metabolismo , Uracila/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...