Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 42(12): 157, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863209

RESUMO

Using molecular dynamics simulations, we study the steady shear flow of dense assemblies of anisotropic spherocylindrical particles of varying aspect ratios. Comparing frictionless and frictional particles we discuss the specific role of frictional inter-particle forces for the rheological properties of the system. In the frictional system we evidence a shear-thickening regime, similar to that for spherical particles. Furthermore, friction suppresses the alignment of the spherocylinders along the flow direction. Finally, the jamming density in frictional systems is rather insensitive to variations in aspect ratio, quite contrary to what is known from frictionless systems.

2.
Phys Rev E ; 97(3-1): 032131, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776058

RESUMO

We study the different phases and the phase transitions in a system of Y-shaped particles, examples of which include immunoglobulin-G and trinaphthylene molecules, on a triangular lattice interacting exclusively through excluded volume interactions. Each particle consists of a central site and three of its six nearest neighbors chosen alternately, such that there are two types of particles which are mirror images of each other. We study the equilibrium properties of the system using grand canonical Monte Carlo simulations that implement an algorithm with cluster moves that is able to equilibrate the system at densities close to full packing. We show that, with increasing density, the system undergoes two entropy-driven phase transitions with two broken-symmetry phases. At low densities, the system is in a disordered phase. As intermediate phases, there is a solidlike sublattice phase in which one type of particle is preferred over the other and the particles preferentially occupy one of four sublattices, thus breaking both particle symmetry as well as translational invariance. At even higher densities, the phase is a columnar phase, where the particle symmetry is restored, and the particles preferentially occupy even or odd rows along one of the three directions. This phase has translational order in only one direction, and breaks rotational invariance. From finite-size scaling, we demonstrate that both the transitions are first order in nature. We also show that the simpler system with only one type of particle undergoes a single discontinuous phase transition from a disordered phase to a solidlike sublattice phase with an increasing density of particles.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25122264

RESUMO

We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition.


Assuntos
Gases/química , Modelos Moleculares , Transição de Fase , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...