Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(3): 928-946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164082

RESUMO

The green leaf volatiles (GLVs) Z-3-hexen-1-ol (Z3-HOL) and Z-3-hexenyl acetate (Z3-HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3-HOL and Z3-HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3-HAC showed a stronger root growth inhibition effect than Z3-HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor-like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well-known components of damage-associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.


Assuntos
Células Vegetais , Compostos Orgânicos Voláteis , Células Vegetais/metabolismo , Plântula/metabolismo , Plantas/metabolismo , Transdução de Sinais , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo
2.
Plant Sci ; 339: 111962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103696

RESUMO

The Arabidopsis MAP Kinases (MAPKs) MPK6 and MPK3 and orthologs in other plants function as major stress signaling hubs. MAPKs are activated by phosphorylation and are negatively regulated by MAPK-inactivating phosphatases (MIPPs), which alter the intensity and duration of MAPK signaling via dephosphorylation. Unlike in other plant species, jasmonic acid (JA) accumulation in Arabidopsis is apparently not MPK6- and MPK3-dependent, so their role in JA-mediated defenses against herbivorous insects is unclear. Here we explore whether changes in MPK6/3 phosphorylation kinetics in Arabidopsis MIPP mutants lead to changes in hormone synthesis and resistance against herbivores. The MIPPs MKP1, DsPTP1, PP2C5, and AP2C1 have been implicated in responses to infection, drought, and osmotic stress, which all impinge on JA-mediated defenses. In loss-of-function mutants, we found that the four MIPPs alter wound-induced MPK6/3 phosphorylation kinetics and affect the accumulation of the defense hormones JA, abscisic acid, and salicylic acid, as compared to wild type plants (Col-0). Moreover, MPK6/3 misregulation in MIPP or MAPK mutant plants resulted in slight changes in the resistance to Trichoplusia ni and Spodoptera exigua larvae as compared to Col-0. Our data indicate that MPK6/3 and the four MIPPs moderately contribute to wound signaling and defense against herbivorous insects in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases
3.
Front Genet ; 14: 1195554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456660

RESUMO

Lipid Transfer Proteins (LTPs) play a crucial role in synthesizing lipid barrier polymers and are involved in defense signaling during pest and pathogen attacks. Although LTPs are conserved with multifaceted roles in plants, these are not yet identified and characterized in Cicer arietinum. In this study, a genome-wide analysis of LTPs was executed and their physiochemical properties, biochemical function, gene structure analysis, chromosomal localization, promoter analysis, gene duplication, and evolutionary analysis were performed using in silico tools. Furthermore, tissue-specific expression analysis and gene expression analysis during pest attack was also conducted for the LTPs. A total of 48 LTPs were identified and named as CaLTPs. They were predicted to be small unstable proteins with "Glycolipid transfer protein" and "Alpha-Amylase Inhibitors, Lipid Transfer and Seed Storage" domains, that are translocated to the extracellular region. CaLTPs were predicted to possess 3-4 introns and were located on all the eight chromosomes of chickpea with half of the CaLTPs being localized on chromosomes 4, 5, and 6, and found to be closely related to LTPs of Arabidopsis thaliana and Medicago trancatula. Gene duplication and synteny analysis revealed that most of the CaLTPs have evolved due to tandem or segmental gene duplication and were subjected to purifying selection during evolution. The promoters of CaLTPs had development-related, phytohormone-responsive, and abiotic and biotic stress-related cis-acting elements. A few CaLTP transcripts exhibited differential expression in diverse tissue types, while others showed no/very low expression. Out of 20 jasmonate-regulated CaLTPs, 14 exhibited differential expression patterns during Helicoverpa armigera-infestation, indicating their role in plant defense response. This study identified and characterized CaLTPs from an important legume, C. arietinum, and indicated their involvement in plant defense against H. armigera-infestation, which can be further utilized to explore lipid signaling during plant-pest interaction and pest management.

4.
Plant Cell Rep ; 42(7): 1133-1146, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37195503

RESUMO

KEY MESSAGE: F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.


Assuntos
Proteínas F-Box , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo , Desenvolvimento Vegetal/genética
5.
J Biomol Struct Dyn ; 41(22): 12863-12879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703620

RESUMO

Lipid-transfer proteins (LTPs) are lipid-binding small proteins, ubiquitously distributed amongst plant kingdom. Apart from their involvement in plant defense, it has also been discovered that they induce allergic reactions in humans. A plethora of LTPs have been identified in vegetables, fruits, pollens, nuts, and latex, among which Pru p 3, a LTP allergen from peach fruit, is extensively studied and exhibits cross-reactivity with potential allergens from different species. In Cicer arietinum, a family of LTPs (CaLTPs) has been identified and their importance in plant defense during Helicoverpa armigera-infestation has been recognized. However, the determination of the allergenicity potential of CaLTPs has not been attempted. In this study, we aim to decipher the allergenicity potential of defense-related CaLTPs. The allergenicity potential prediction, and identification of B-cell epitope binding regions showed that the CaLTPs had conserved domains and B-cell epitopes in the same regions as Prup3 (a marker allergen for LTPs). Using molecular docking and simulations, we observed that the CaLTPs successfully interacted with the Immunoglobin E(IgE)with docking energies ranging from -315.5 to -268.4 and the structures were stabilized within 10 ns of simulation. Through this study, we intend to embellish our present knowledge and understanding of the sensitization and allergenicity potential of CaLTPs.Communicated by Ramaswamy H. Sarma.


Assuntos
Cicer , Hipersensibilidade Alimentar , Humanos , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas , Simulação de Acoplamento Molecular , Herbivoria , Plantas , Lipídeos
6.
Sci Rep ; 11(1): 15891, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354159

RESUMO

The E3 ubiquitin ligases have been known to intrigue many researchers to date, due to their heterogenicity and substrate mediation for ubiquitin transfer to the protein. HECT (Homologous to the E6-AP Carboxyl Terminus) E3 ligases are spatially and temporally regulated for substrate specificity, E2 ubiquitin-conjugating enzyme interaction, and chain specificity during ubiquitylation. However, the role of the HECT E3 ubiquitin ligase in plant development and stress responses was rarely explored. We have conducted an in-silico genome-wide analysis to identify and predict the structural and functional aspects of HECT E3 ligase members in tomato. Fourteen members of HECT E3 ligases were identified and analyzed for the physicochemical parameters, phylogenetic relations, structural organizations, tissue-specific gene expression patterns, and protein interaction networks. Our comprehensive analysis revealed the HECT domain conservation throughout the gene family, close evolutionary relationship with different plant species, and active involvement of HECT E3 ubiquitin ligases in tomato plant development and stress responses. We speculate an indispensable biological significance of the HECT gene family through extensive participation in several plant cellular and molecular pathways.


Assuntos
Solanum lycopersicum/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Estudo de Associação Genômica Ampla , Solanum lycopersicum/metabolismo , Filogenia , Ligação Proteica , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
7.
Braz. arch. biol. technol ; 56(3): 475-484, May-June 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-679195

RESUMO

Thermoplastics, poly vinyl chloride and low-density polyethylene were treated in the presence of indigenously developed bacterial consortium in laboratory and natural conditions. The consortium was developed using four bacteria, selected on the basis of utilization of PVC as primary carbon source, namely P. otitidis, B. aerius, B. cereus and A. pedis isolated from the plastic waste disposal sites in Northern India. The comparative in-vitro treatment studies as revealed by the spectral and thermal data, illustrated the relatively better biodegradation potential of developed consortium for PVC than the LDPE. Further, the progressive treatments of both the thermoplastics were conducted for three months under natural conditions. For this purpose, bioformulation of consortium was prepared and characterized for the viability up to 70 days of storage at 25±1ºC. The consortium treated polymer samples were monitored through SEM and FT-IR spectroscopy. Analytical data revealed the biodeterioration potential of the developed consortium for PVC and LDPE, which could help in disposing the plastic waste.

8.
J Gen Appl Microbiol ; 59(1): 83-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23518522

RESUMO

In view of antibiotic resistance among pathogens, the present study is to address the toxicity of Ag2O nanoparticles against the Gram-positive and Gram-negative bacteria through in vitro assays. The preliminary screening by agar diffusion assay confirms the antibacterial activity of Ag2O nanoparticles against all the test bacteria. Comparative antibacterial activity of Ag2O nanoparticles and respective antibiotics reveals their broad range of activity and lower inhibitory dose against the used bacterial strains. Further, they can inhibit E. coli with an effective dose of 0.036 mg/ml within 1 h of exposure time as determined by luciferin based ATP assay. Moreover, the Ag2O nanoparticles exhibit higher antibacterial efficacy against Gram-negative bacteria than Gram-positive bacteria, as revealed by their MIC & MBC values. Therefore, Ag2O nanoparticles pave the way for a new generation of antibacterial agents against the emerging multidrug resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas , Óxidos/farmacologia , Compostos de Prata/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
9.
Biotechnol J ; 6(1): 107-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170978

RESUMO

The present study presents the development of a standard protocol for detection and screening of nanoparticle(s) for their antimicrobial activity with particular reference to organophilic montmorillonite (Ommt). For this purpose, Ommt nanoparticles have been synthesized through cation exchange of commercial montmorillonite (K10) with a cetyl pyridinium bromide. The formation of Ommt has been ascertained through UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction spectra, and transmission electron microscopy. Subsequently, "zone of inhibition" and "bacterial killing" assays were performed by incubating the four Gram-negative test bacteria with Ommt, to determine antimicrobial activity and reduction in colony forming unit per mL (confirmative test), respectively. The developed assay will provide an easy approach over conventional disc diffusion antibiotic sensitivity test, to study the impact of different nanoparticles against different bacterial species.


Assuntos
Bentonita/química , Bentonita/farmacologia , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nanotecnologia , Pseudomonas aeruginosa/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
J Microbiol Biotechnol ; 20(5): 908-16, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20519915

RESUMO

Fullerene-60 nanoparticles were used for studying their influence upon the LDPE biodegradation efficiency of two potential polymer-degrading consortia comprising of three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortial growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz. 0.25%, 0.5% and 1%). Although, addition of 0.01% fullerene into the biodegradation assays containing 5 mg/ml LDPE subsided growth-curves significantly, but subsequent analysis of degraded products revealed enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with introduction of nu C-O frequencies into hydrocarbon backbone of LDPE. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (DeltaH) in fullerene-assisted biodegraded LDPE suggesting probable formation of multiple, macromolecular by-products. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to alleviate polymer biodegradation process of bacterial consortia.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fulerenos/farmacologia , Polietileno/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...