Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133203, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103294

RESUMO

Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 µg/mL for E. coli, P. aeruginosa, and 6.25 µg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 µg/mL for E. coli, P. aeruginosa, and 25 µg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/química , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana
2.
Anal Chim Acta ; 1251: 341016, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925274

RESUMO

The rapid-charge carrier recombination and low conductivity are critical in devising an efficient photoelectrochemical (PEC) sensor. Herein, we propose partial oxidation of few-layered MXene (Ti3C2Tx) to construct a photo-active TiO2/Ti3C2Tx platform that could be configured for PEC sensing of folate receptors (FR), particularly, FR-expressing breast cancer cells (MDA-MB-231). MXene-Ti3C2Tx dispersion was oxidized in natural-open air conditions, where continuous exposure for six (06) days allowed for homogeneous in-situ growth of TiO2 over MXenes nanosheets (MX-06). This exposure enabled partial oxidation of MXene-sheets with a balanced TiO2 to MXene content that could exhibit improved photoresponsive characteristics owing to the synergism of redox-active TiO2 and highly conductive underlying Ti3C2Tx. The photoelectrode was then adapted for biorecognition by conjugating chitosan and folic acid (FA) networks, which permitted selective detection of FR-expressed cells with significant antifouling capabilities against common proteins such as bovine serum album (BSA), hemoglobin, and immunoglobulin G. (Ig G). The detection mechanism relies on FA's strong affinity for cancer cell folate receptors, which proportionally inhibited the photoelectrodes PEC oxidation response to ascorbic acid (AA)(mediator). The proposed inhibition strategy enabled sensitive detection of FR-expressed MDA-MB-231 cells in the concentration range of 1 × 102 to 2 × 107 cells/mL with a detection limit of 1.01 cells/mL (S/N = 3).


Assuntos
Neoplasias , Titânio , Oxirredução , Ácido Fólico
3.
Micromachines (Basel) ; 14(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838187

RESUMO

Layered double hydroxides (LDH) are regarded as attractive pseudocapacitive materials due to their impressive capacitive qualities that may be adjustable to their morphological features. However, the layered structure of LDH renders them susceptible to structural aggregation, which inhibits effective electrolyte transport and limits their practical applicability after limited exposure to active areas. Herein, we propose a simple template-free strategy to synthesize hierarchical hollow sphere NiMn-LDH material with high surface area and exposed active as anode material for supercapacitor application. The template-free approach enables the natural nucleation of Ni-Mn ions resulting in thin sheets that self-assemble into a hollow sphere, offering expended interlayer spaces and abundant redox-active active sites. The optimal NiMn-LDH-12 achieved a specific capacitance of 1010.4 F g-1 at a current density of 0.2 A g-1 with capacitance retention of 70% at 5 A g-1 after 5000 cycles with lower charge transfer impedance. When configured into an asymmetric supercapacitors (ASC) device as NiMn-LDH//AC, the material realized a specific capacitance of 192.4 F g-1 at a current density of 0.2 A g-1 with a good energy density of 47.9 Wh kg-1 and a power density of 196.8 W kg-1. The proposed morphological-tuning route is promising for designing template-free NiMn-LDHs spheres with practical pseudocapacitive characteristics.

4.
Biosensors (Basel) ; 12(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35448291

RESUMO

MXenes-Ti3C2Tx, based on their versatile surface characteristics, has rapidly advanced as an interactive substrate to develop electrochemical sensors for clinical applications. Herein, Ni embedded Ti3C2Tx (MX-Ni) composites were prepared using a self-assembly approach where Ti3C2Tx sheets served as an interactive conductive substrate as well as a protective layer to nickel nanoparticles (Ni NPs), preventing their surface oxidation and aggregation. The composite displayed a cluster-like morphology with an intimate interfacial arrangement between Ni, Ti3C2Tx and Ti3C2Tx-derived TiO2. The configuration of MX-Ni into an electrochemical sensor realized a robust cathodic reduction current against methylmalonic acid (MMA), a biomarker to vitamin B12 deficiency. The synergism of Ni NPs strong redox characteristics with conductive Ti3C2Tx enabled sensitive signal output in wide detection ranges of 0.001 to 0.003 µM and 0.0035 to 0.017 µM and a detection sensitivity down to 0.12 pM of MMA. Importantly, the sensor demonstrated high signal reproducibility and excellent operational capabilities for MMA in a complex biological matrix such as human urine samples.


Assuntos
Ácido Metilmalônico , Nanopartículas , Eletrodos , Humanos , Reprodutibilidade dos Testes , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...