RESUMO
Civil infrastructure will be essential to face the interlinked existential threats of climate change and rising resource demands while ensuring a livable Anthropocene for all. However, conventional infrastructure planning largely neglects the contributions and maintenance of Earth's ecological life support systems, which provide irreplaceable services supporting human well-being. The stability and performance of these services depend on biodiversity, but conventional infrastructure practices, narrowly focused on controlling natural capital, have inadvertently degraded biodiversity while perpetuating social inequities. Here, we envision a new infrastructure paradigm wherein biodiversity and ecosystem services are a central objective of civil engineering. In particular, we reimagine infrastructure practice such that 1) ecosystem integrity and species conservation are explicit objectives from the outset of project planning; 2) infrastructure practices integrate biodiversity into diverse project portfolios along a spectrum from conventional to nature-based solutions and natural habitats; 3) ecosystem functions reinforce and enhance the performance and lifespan of infrastructure assets; and 4) civil engineering promotes environmental justice by counteracting legacies of social inequity in infrastructure development and nature conservation. This vision calls for a fundamental rethinking of the standards, practices, and mission of infrastructure development agencies and a broadening of scope for conservation science. We critically examine the legal and professional precedents for this paradigm shift, as well as the moral and economic imperatives for manifesting equitable infrastructure planning that mainstreams biodiversity and nature's benefits to people. Finally, we set an applied research agenda for supporting this vision and highlight financial, professional, and policy pathways for achieving it.
Assuntos
Biodiversidade , Ecossistema , Humanos , Mudança Climática , Conservação dos Recursos NaturaisRESUMO
The correction of transverse malocclusions due to maxillary width deficiency in adults is challenging. Multiple surgical and nonsurgical procedures have been used in conjunction with orthodontics to address this situation, and most common is the surgically assisted rapid maxillary expansion (SA-RME). Although successful, it is quite aggressive. The present investigation assesses the usefulness of Piezocision-assisted orthodontics as a less-invasive option for treatment of transverse maxillary deficiencies in adults. Dental casts were taken before and after Piezocision-assisted palatal expansion in four patients. They were digitized into STL files and superimposed. Differences on cross-arch tooth torque, angulation/tipping, and movement distances between time points were quantified using a digital static and a novel digital 3D-movement evaluation method. For the buccolingual movement per tooth, first premolars averaged 3.33 ± 1.3 mm, second premolars averaged 3.63 ± 0.6 mm, and first and second molars averaged 1.56 ± 1.2 mm and 0.36 ± 1.2 mm, respectively. Bodily movement of the teeth was observed with minimal tipping and no development of gingival recessions. Piezocision-assisted palatal expansion is a safe and reliable procedure that can help patients with maxillary width deficiency. It is a new tool in the orthodontist's armamentarium that can be used as an accelerator of treatment and as a new way to solve orthodontic challenges in selected adult patients.
Assuntos
Má Oclusão , Ortodontia , Adulto , Dente Pré-Molar , Humanos , Má Oclusão/cirurgia , Maxila/cirurgia , Técnica de Expansão Palatina , Projetos PilotoRESUMO
PROBLEM: Crry is a widely expressed type 1 transmembrane complement regulatory protein in rodents which protects self-tissue by downregulating C3 activation. Crry-/- concepti produced by Crry+/- × Crry+/- matings are attacked by maternal complement system leading to loss before day 10. The membrane attack complex is not the mediator of this death. We hypothesized that the ability of C3b to engage the alternative pathway's feedback loop relatively unchecked on placental membranes induces the lesion yielding the demise of the Crry-/- mouse. METHOD OF STUDY: We investigated the basis of Crry-/- conceptus demise by depleting maternal complement with cobra venom factor and blocking antibodies. We monitored their effects primarily by genotyping and histologic analyses. RESULTS: We narrowed the critical period of the complement effect from 6.5 to 8.5 days post-coitus (dpc), which is immediately after the conceptus is exposed to maternal blood. Deposition by 5.5 dpc of maternal C3b on the placental vasculature lacking Crry-/- yielded loss of the conceptus by 8.5 dpc. Fusion of the allantois to the chorion during placental assembly did not occur, fetal vessels originating in the allantois did not infiltrate the chorioallantoic placenta, the chorionic plate failed to develop, and the labyrinthine component of the placenta did not mature. CONCLUSION: Our data are most consistent with the deposition of C3b being responsible for the failure of the allantois to fuse to the chorion leading to subsequent conceptus demise.
Assuntos
Aborto Espontâneo/genética , Ativação do Complemento/imunologia , Complemento C3b/imunologia , Via Alternativa do Complemento/imunologia , Embrião de Mamíferos/patologia , Receptores de Complemento/genética , Aborto Espontâneo/imunologia , Animais , Convertases de Complemento C3-C5 da Via Alternativa/metabolismo , Embrião de Mamíferos/imunologia , Feminino , Camundongos , Camundongos Knockout , Placenta/imunologia , Placenta/patologia , Gravidez , Receptores de Complemento 3bRESUMO
We test the hypothesis that prehistoric Native American land use influenced the Euro-American settlement process in a South Carolina Piedmont landscape. Long term ecological studies demonstrate that land use legacies influence processes and trajectories in complex, coupled social and ecological systems. Native American land use likely altered the ecological and evolutionary feedback and trajectories of many North American landscapes. Yet, considerable debate revolves around the scale and extent of land use legacies of prehistoric Native Americans. At the core of this debate is the question of whether or not European colonists settled a mostly "wild" landscape or an already "humanized" landscape. We use statistical event analysis to model the effects of prehistoric Native American settlement on the rate of Colonial land grants (1749-1775). Our results reveal how abandoned Native American settlements were among the first areas claimed and homesteaded by Euro-Americans. We suggest that prehistoric land use legacies served as key focal nodes in the Colonial era settlement process. As a consequence, localized prehistoric land use legacies likely helped structure the long term, landscape- to regional-level ecological inheritances that resulted from Euro-American settlement.
Assuntos
Fenômenos Ecológicos e Ambientais , Indígenas Norte-Americanos , Arqueologia , Europa (Continente) , Humanos , South Carolina , ÁrvoresRESUMO
Efforts to increase glycinebetaine (GB) levels in plants have been pursued as an approach to improving plant performance under stress conditions. To date, the impact of engineered levels of GB has been limited by metabolic constraints that restrict the achieved increases. We report the identification of a novel gene, GB1, that is differentially expressed in high and low GB accumulating maize genotypes. The predicted GB1 protein shows 60% identity to a putative C-4 sterol methyl oxidase from rice. Overexpression of GB1 in maize and soybean led to dramatically higher leaf GB content in most of the transgenic lines compared to wild-type. These results suggest that the GB1 protein is an important component of the biochemical pathways controlling GB accumulation in plants.
RESUMO
MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.
Assuntos
Carbolinas/química , Carbolinas/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Carbolinas/síntese química , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-AtividadeRESUMO
The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).
RESUMO
Maize (Zea mays ssp. maysâ L.) is highly susceptible to drought stress. This work focused on whole-plant physiological mechanisms by which a biotechnology-derived maize event expressing bacterial cold shock protein B (CspB), MON 87460, increased grain yield under drought. Plants of MON 87460 and a conventional control (hereafter 'control') were tested in the field under well-watered (WW) and water-limited (WL) treatments imposed during mid-vegetative to mid-reproductive stages during 2009-2011. Across years, average grain yield increased by 6% in MON 87460 compared with control under WL conditions. This was associated with higher soil water content at 0.5 m depth during the treatment phase, increased ear growth, decreased leaf area, leaf dry weight and sap flow rate during silking, increased kernel number and harvest index in MON 87460 than the control. No consistent differences were observed under WW conditions. This indicates that MON 87460 acclimated better under WL conditions than the control by lowering leaf growth which decreased water use during silking, thereby eliciting lower stress under WL conditions. These physiological responses in MON 87460 under WL conditions resulted in increased ear growth during silking, which subsequently increased the kernel number, harvest index and grain yield compared to the control.
Assuntos
Biotecnologia/métodos , Secas , Zea mays/fisiologia , Proteínas de Bactérias/genética , Grão Comestível , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Solo/químicaAssuntos
Processo Alveolar/cirurgia , Má Oclusão Classe II de Angle/terapia , Piezocirurgia/métodos , Diastema/terapia , Seguimentos , Humanos , Masculino , Mandíbula/cirurgia , Maxila/cirurgia , Pessoa de Meia-Idade , Placas Oclusais , Braquetes Ortodônticos , Contenções Ortodônticas , Fios Ortodônticos , Retrognatismo/terapiaRESUMO
Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.
RESUMO
A study of lung cancer risk from residential radon exposure and its radioactive progeny was performed with 200 cases (58% male, 42% female) and 397 controls matched on age and sex, all from the same health maintenance organization. Emphasis was placed on accurate and extensive year-long dosimetry with etch-track detectors in conjunction with careful questioning about historic patterns of in-home mobility. Conditional logistic regression was used to model the outcome of cancer on radon exposure, while controlling for years of residency, smoking, education, income, and years of job exposure to known or potential carcinogens. Smoking was accounted for by nine categories: never smokers, four categories of current smokers, and four categories of former smokers. Radon exposure was divided into six categories (model 1) with break points at 25, 50, 75, 150, and 250 Bq m, the lowest being the reference. Surprisingly, the adjusted odds ratios (AORs) were, in order, 1.00, 0.53, 0.31, 0.47, 0.22, and 2.50 with the third category significantly below 1.0 (p < 0.05), and the second, fourth, and fifth categories approaching statistical significance (p < 0.1). An alternate analysis (model 2) using natural cubic splines allowed calculating AORs as a continuous function of radon exposure. That analysis produces AORs that are substantially less than 1.0 with borderline statistical significance (0.048 < or = p < or = 0.05) between approximately 85 and 123 Bq m. College-educated subjects in comparison to high-school dropouts have a significant reduction in cancer risk after controlling for smoking, years of residency, and job exposures with AOR = 0.30 (95% CI: 0.13, 0.69), p = 0.005 (model 1).
Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Habitação/estatística & dados numéricos , Neoplasias Pulmonares/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Radônio/análise , Medição de Risco/métodos , Carga Corporal (Radioterapia) , Estudos de Casos e Controles , Geografia/estatística & dados numéricos , Humanos , Incidência , Massachusetts/epidemiologia , Doses de Radiação , Monitoramento de Radiação/estatística & dados numéricos , Proteção Radiológica , Fatores de RiscoRESUMO
Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Fator de Ligação a CCAAT/fisiologia , Desastres , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/fisiologia , Água , Zea mays/genética , Proteínas de Arabidopsis/genética , Fator de Ligação a CCAAT/genética , Genômica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Fatores de Transcrição/genética , Zea mays/crescimento & desenvolvimentoRESUMO
Understanding natural variation in the composition of conventional crop germplasms is critical in establishing a baseline for comparison of biotechnology-derived crops. This is particularly relevant to such traits as tolerance to drought stress. Thus, there is both a need to understand the contribution of stress conditions to natural variation in plant nutritional components and to determine whether levels of small molecule metabolites such as osmoprotectants and stress metabolites are also affected. As a first step in developing such information for maize, seven conventional hybrids were grown under different moisture regimens and the impact of moisture on composition was assessed. The regimens included well-watered conditions, water restriction during the vegetative phase, and water restriction during grain fill. Compositional analyses of the harvested grain included assessments of the levels of proximates (moisture, protein, oil, starch) and small molecule metabolites such as fatty acids, free amino acids, organic acids, sugars, total glycerol, glycine betaine, and abscisic acid. Ranges for these analytes were determined across all moisture regimens, and the effect of the different water regimens on these analytes was also evaluated. The number and type of grain analytes that showed statistically significant differences in levels between different water regimens differed quite markedly by maize hybrid. However, the magnitude of mean differences between well-watered and water-restricted samples was typically small, and statistically significant differences for any given analyte were typically observed in only one to three of the seven maize hybrids. Only two analytes, free glutamine and free proline, showed a significant drought-induced difference in at least four maize hybrids.
Assuntos
Desastres , Sementes/química , Água , Zea mays/química , Zea mays/crescimento & desenvolvimento , Carboidratos/análise , Hibridização Genética , Estações do Ano , Estados UnidosRESUMO
Extramedullary myeloid tumors (myeloid sarcomas) are rare neoplasms that are composed of myeloid precursors. They usually arise concurrently with a diagnosis of acute myeloid leukemia, chronic myeloid leukemia, or other myeloproliferative disorders. They may also indicate relapsing disease in a patient with a prior history of leukemia or myeloproliferative disorder. We present our findings of a 63-year-old female diagnosed with extramedullary myeloid tumor first presenting in the gallbladder. She subsequently developed respiratory failure; pre- and postmortem bone marrow studies were negative for leukemia by morphology, flow cytometry, and karyotypic analysis. However, the myeloid neoplasm was disseminated throughout most of her remaining organs. Immunohistochemical stains of the cells indicated a neoplasm of myelomonocytic derivation (CD4, CD43, CD45, CD68, myeloperoxidase, and lysozyme positive). To our knowledge, this is the first report of an extramedullary myeloid neoplasm of the gallbladder with disseminated disease without involvement of the bone marrow.
Assuntos
Medula Óssea/patologia , Neoplasias da Vesícula Biliar/patologia , Sarcoma Mieloide/patologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Medula Óssea/metabolismo , Feminino , Neoplasias da Vesícula Biliar/complicações , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/metabolismo , Humanos , Pessoa de Meia-Idade , Muramidase/metabolismo , Peroxidase/metabolismo , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/patologia , Sarcoma Mieloide/complicações , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/metabolismoRESUMO
Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.
Assuntos
Ácido Aspártico/metabolismo , Cálcio/metabolismo , Simulação por Computador , Parvalbuminas/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Sítios de Ligação , Ligação Competitiva , Motivos EF Hand/genética , Modelos Moleculares , Dados de Sequência Molecular , Parvalbuminas/química , Parvalbuminas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , TermodinâmicaRESUMO
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.
Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Fator de von Willebrand/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Simulação por Computador , Humanos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Fator de von Willebrand/metabolismoRESUMO
In this study emission and synchronous-scan fluorescence spectroscopy have been used to investigate the interaction of the class A (oxygen seeking 'hard acid') metal Al(3+), with Suwannee River fulvic acid (SRFA), as well as competition between Al(3+) and several other metal ions (Ca(2+), Mg(2+), Cu(2+), Pd(2+), La(3+), Tb(3+) and Fe(3+)) for binding sites on SRFA. Of the four metal ions possessing very similar (and relatively low) ionic indices (Ca(2+), Mg(2+), Cu(2+) and Pd(2+)) only the latter two paramagnetic ions significantly quenched SRFA fluorescence emission intensity. Of the four metal ions possessing very similar (and relatively low) covalent indices (Ca(2+), Mg(2+), La(3+) and Tb(3+)) only the last paramagnetic ion (Tb(3+)) significantly quenched SRFA fluorescence. None of these metals was able to significantly compete with SRFA-bound Al(3+).Fe(3+), which differs substantially from all of the other metals examined in this study in that it possesses a relatively high ionic index (but not as high as Al(3+)) and a relatively low covalent index (but not as low as Al(3+)), was able not only to quench SRFA fluorescence but also to compete (at least to some extent) with SRFA-bound Al(3+). Synchronous-scan fluorescence SRFA spectra taken in the absence and presence of Fe(3+) and/or Al(3+) support the view that these two metal ions can compete for sites on SRFA. The results of these fluorescence experiments further confirm the Al(3+), and metal ions that have electronic properties somewhat similar to Al(3+) (such as Fe(3+)) are somewhat unique in their ability to interact strongly with binding sites on fulvic acids.
RESUMO
Bacillus anthracis, a spore-forming infectious bacterium, produces an exotoxin, called the edema factor (EF), that functions in part by disrupting internal signalling pathways. When complexed with human host cell calmodulin (CaM), EF becomes an active adenylyl cyclase, producing the internal signal substance cyclic-AMP in an uncontrolled fashion. Recently, the crystal structures for uncomplexed EF and EF:CaM complexes in the presence and absence of a substrate analog (3'-deoxy-ATP), were reported. EF mutational studies have implicated a number of residues important in CaM binding and/or in the generation of the adenylyl cyclase active site, formed by the movements of the EF switch A, B and C regions upon CaM binding. Here we report on the results of molecular dynamics (MD) simulations on two EF:CaM complexes, one containing wild-type EF and the other containing EF in which a cluster of residues in the switch A region (L523, K525, Q526 and V529) have been mutated to alanine. The switch A mutations cause a large increase in the flexibility of the switch C region, the rupture of a number of EF-CaM interactions, an expansion of the carboxyl-terminal domain of CaM, and a change in the Ca(2+) ion binding abilities of the CaM that is in complex with EF. The results indicate the importance of the mutated switch A residues in maintaining a compact EF:CaM complex that appears to be a prerequisite for the generation of a fully-functional adenylyl cyclase active site. The effects of mutating key residues (K346, K353, H577, E588, D590 and N639) in the active site region of EF (to alanine) on the ability of EF to bind the 3'-deoxy-ATP substrate analog were also examined. Active-site residue substitutions at positions 583 (N583A) and 577 (H577A) were found to be particularly disruptive for the placement of the adenine ring moiety into the position found in the x-ray crystal structure of the ligand-protein complex.
Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Bacillus anthracis/metabolismo , Calmodulina/metabolismo , Simulação por Computador , Exotoxinas/química , Adenilil Ciclases/genética , Antígenos de Bactérias , Toxinas Bacterianas , Sítios de Ligação , Exotoxinas/genética , Exotoxinas/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Mutação , Estrutura Terciária de ProteínaRESUMO
In an effort to understand the role of environmental metal ions in the interaction of charged pesticides with humic substances, a fluorescence study of the interaction of the widely-used herbicide 2,4-dichlorophenoxyacetic acid (DCPAA) with Al(3+) and Pd(2+) and Suwannee River fulvic acid (SRFA) was undertaken. Initial fluorescence experiments on binary solutions clearly indicated that both Al(3+) and Pd(2+) strongly interact with both SRFA and DCPAA when alone in solution with the metal ion. Titrations of SRFA with Al(3+) at pH values of 4.0, 3.0 and 2.0 revealed decreased degrees of fluorescence emission enhancement (at lambda(emission, max)=424 nm) with decreasing pH, consistent with the expected loss of rigidity in the SRFA-Al(3+) complexes formed as pH is lowered. In contrast, titrations of SRFA with Pd(2+) at all of these pH values resulted in significant fluorescence quenching. Al(3+) additions to solutions of DCPAA at pH values above the pK(a) (2.64) of DCPAA resulted primarily in significant changes in the wavelength of maximum emission (without significant quenching or enhancement of emission intensity), while Pd(2+) additions to DCPAA solutions resulted primarily in very significant fluorescence quenching. The DCPAA fluorescence results strongly support the formation of an Al(3+)-DCPAA complex at pH values above the pK(a) of DCPAA. The fluorescence results obtained for solutions of Pd(2+) and DCPAA are best explained by a collisional quenching mechanism, that is, energy transfer from excited DCPAA molecules to Pd(2+) following the collision of these two species in solution. Excitation-emission matrix plots obtained on ternary solutions (at environmentally-relevant pH 4.0) containing SRFA, DCPAA and metal ions (i.e., either Al(3+) or Pd(2+)) provides evidence (especially for systems containing Al(3+)) for the existence of ternary complexes between fulvic acid species, the herbicide DCPAA and metal ion, suggesting (at least at pH 4.0, where the predominant DCPAA species is negatively-charged) that metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides.
Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Alumínio/química , Benzopiranos/química , Herbicidas/química , Paládio/química , Poluentes Químicos da Água/análise , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Rios , Espectrometria de Fluorescência/métodos , TitulometriaRESUMO
ATP/CTP:tRNA nucleotidyltransferases (NTases) and poly(A) polymerases (PAPs) belong to the same superfamily and their catalytic domains are remotely related. Based on the results of fold-recognition analysis and comparison of secondary structure patterns, we predicted that these two NTase families share three domains, corresponding to "palm," "fingers," and "fingernails" in the PAP crystal structure. A homology model of tRNA NTase from Methanococcus jannaschii was constructed. Energy minimization calculations of enzyme-nucleotide complexes and computer-aided docking of nucleotides onto the enzyme's surface were carried out to explore possible ATP and CTP binding sites. Theoretical models were used to guide experimental analysis. Recombinant His-tagged enzyme was expressed in Escherichia coli, and kinetic properties were characterized. The apparent K(M) for CTP was determined to be 38 microM, and the apparent K(M) for ATP was 21 microM. Three mutations of basic amino acids to alanine were created in a highly conserved region predicted to be in the vicinity of the nucleotide binding site. A deletion was also constructed to remove the C-terminal structural domain defined by the model; it retained about 1% of wild type enzymatic activity using CTP as co-substrate, confirming that detectable catalytic activity is exhibited by the N-terminal domain, as defined by the model. Our results suggest a mechanism of differential ATP and CTP binding, which explains how the tRNA NTase, having only one catalytic site, utilizes different nucleotide triphosphates depending on the nature of the tRNA substrate.