Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 4(9): 100642, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39216475

RESUMO

Genetic variants in ABCA7, an Alzheimer's disease (AD)-associated gene, elevate AD risk, yet its functional relevance to the etiology is unclear. We generated a CRISPR-Cas9-mediated abca7 knockout zebrafish to explore ABCA7's role in AD. Single-cell transcriptomics in heterozygous abca7+/- knockout combined with Aß42 toxicity revealed that ABCA7 is crucial for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), and nerve growth factor receptor (NGFR) expressions, which are crucial for synaptic integrity, astroglial proliferation, and microglial prevalence. Impaired NPY induction decreased BDNF and synaptic density, which are rescuable with ectopic NPY. In induced pluripotent stem cell-derived human neurons exposed to Aß42, ABCA7-/- suppresses NPY. Clinical data showed reduced NPY in AD correlated with elevated Braak stages, genetic variants in NPY associated with AD, and epigenetic changes in NPY, NGFR, and BDNF promoters linked to ABCA7 variants. Therefore, ABCA7-dependent NPY signaling via BDNF-NGFR maintains synaptic integrity, implicating its impairment in increased AD risk through reduced brain resilience.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Neuropeptídeo Y , Transdução de Sinais , Peixe-Zebra , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Humanos , Sinapses/metabolismo , Sinapses/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética
2.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902234

RESUMO

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Astrócitos , Barreira Hematoencefálica , Pericitos , Proteína Smad3 , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Pericitos/metabolismo , Pericitos/patologia , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Idoso , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Idoso de 80 Anos ou mais , Modelos Animais de Doenças
3.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

4.
J Comp Physiol B ; 192(5): 577-592, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715660

RESUMO

The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.


Assuntos
Salmo salar , Simportadores , Aclimatação/fisiologia , Animais , Expressão Gênica , Brânquias/metabolismo , Isoformas de Proteínas/genética , Salmo salar/genética , Salmo salar/metabolismo , Água do Mar , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Simportadores/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-34174427

RESUMO

Euryhaline fishes maintain hydromineral balance in a broad range of environmental salinities via the activities of multiple osmoregulatory organs, namely the gill, gastrointestinal tract, skin, kidney, and urinary bladder. Teleosts residing in freshwater (FW) environments are faced with the diffusive loss of ions and the osmotic gain of water, and, therefore, the kidney and urinary bladder reabsorb Na+ and Cl- to support the production of dilute urine. Nonetheless, the regulated pathways for Na+ and Cl- transport by euryhaline fishes, especially in the urinary bladder, have not been fully resolved. Here, we first investigated the ultrastructure of epithelial cells within the urinary bladder of FW-acclimated Mozambique tilapia (Oreochromis mossambicus) by electron microscopy. We then investigated whether tilapia employ Na+/Cl- cotransporter 1 (Ncc1) and Clc family Cl- channel 2c (Clc2c) for the reabsorption of Na+ and Cl- by the kidney and urinary bladder. We hypothesized that levels of their associated gene transcripts vary inversely with environmental salinity. In whole kidney and urinary bladder homogenates, ncc1 and clc2c mRNA levels were markedly higher in steady-state FW- versus SW (seawater)-acclimated tilapia. Following transfer from SW to FW, ncc1 and clc2c in both the kidney and urinary bladder were elevated within 48 h. A concomitant increase in branchial ncc2, and decreases in Na+/K+/2Cl-cotransporter 1a (nkcc1a) and cystic fibrosis transmembrane regulator 1 (cftr1) levels indicated a transition from Na+ and Cl- secretion to absorption by the gills in parallel with the identified renal and urinary bladder responses to FW transfer. Our findings suggest that Ncc1 and Clc2c contribute to the functional plasticity of the kidney and urinary bladder in tilapia.


Assuntos
Rim/metabolismo , Receptores da Prolactina/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tilápia/fisiologia , Bexiga Urinária/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Aclimatação/fisiologia , Animais , Água Doce , Regulação da Expressão Gênica , Brânquias/metabolismo , Íons , Masculino , Osmorregulação , Prolactina/metabolismo , Salinidade , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...