Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37501572

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptídeos Antimicrobianos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Virol J ; 20(1): 239, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853388

RESUMO

SARS-CoV-2 has evolved several strategies to overcome host cell defenses by inducing cell injury to favour its replication. Many viruses have been reported to modulate the intracellular redox balance, affecting the Nuclear factor erythroid 2-Related Factor 2 (NRF2) signaling pathway. Although antioxidant modulation by SARS-CoV-2 infection has already been described, the viral factors involved in modulating the NRF2 pathway are still elusive. Given the antagonistic activity of ORF6 on several cellular pathways, we investigated the role of the viral protein towards NRF2-mediated antioxidant response. The ectopic expression of the wt-ORF6 protein negatively impacts redox cell homeostasis, leading to an increase in ROS production, along with a decrease in NRF2 protein and its downstream controlled genes. Moreover, when investigating the Δ61 mutant, previously described as an inactive nucleopore proteins binding mutant, we prove that the oxidative stress induced by ORF6 is substantially related to its C-terminal domain, speculating that ORF6 mechanism of action is associated with the inhibition of nuclear mRNA export processes. In addition, activation by phosphorylation of the serine residue at position 40 of NRF2 is increased in the cytoplasm of wt-ORF6-expressing cells, supporting the presence of an altered redox state, although NRF2 nuclear translocation is hindered by the viral protein to fully antagonize the cell response. Furthermore, wt-ORF6 leads to phosphorylation of a stress-activated serine/threonine protein kinase, p38 MAPK, suggesting a role of the viral protein in regulating p38 activation. These findings strengthen the important role of oxidative stress in the pathogenesis of SARS-CoV-2 and identify ORF6 as an important viral accessory protein hypothetically involved in modulating the antioxidant response during viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antioxidantes , Homeostase , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Serina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892456

RESUMO

Respiratory viral infections continue to pose significant challenges, particularly for more susceptible and immunocompromised individuals. Nutraceutical strategies have been proposed as promising strategies to mitigate their impact and improve public health. In the present study, we developed a mixture of two hydroalcoholic extracts from the aerial parts of Echinacea purpurea (L.) Moench (ECP) and the cones of Humulus lupulus L. (HOP) that can be harnessed in the prevention and treatment of viral respiratory diseases. The ECP/HOP mixture (named ECHOPvir) was characterized for the antioxidant and cytoprotective properties in airway cells. Moreover, the immunomodulating properties of the mixture in murine macrophages against antioxidant and inflammatory stimuli and its antiviral efficacy against the PR8/H1N1 influenza virus were assayed. The modulation of the Nrf2 was also investigated as a mechanistic hypothesis. The ECP/HOP mixture showed a promising multitarget bioactivity profile, with combined cytoprotective, antioxidant, immunomodulating and antiviral activities, likely due to the peculiar phytocomplexes of both ECP and HOP, and often potentiated the effect of the single extracts. The Nrf2 activation seemed to trigger these cytoprotective properties and suggest a possible usefulness in counteracting the damage caused by different stressors, including viral infection. Further studies may strengthen the interest in this product and underpin its future nutraceutical applications.


Assuntos
Echinacea , Humulus , Vírus da Influenza A Subtipo H1N1 , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia , Antivirais/farmacologia
4.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445672

RESUMO

There is an urgent need to identify efficient antiviral compounds to combat existing and emerging RNA virus infections, particularly those related to seasonal and pandemic influenza outbreaks. While inhibitors of the influenza viral integral membrane proton channel protein (M2), neuraminidase (NA), and cap-dependent endonuclease are available, circulating influenza viruses acquire resistance over time. Thus, the need for the development of additional anti-influenza drugs with novel mechanisms of action exists. In the present study, a cell-based screening assay and a small molecule library were used to screen for activities that antagonized influenza A non-structural protein 1 (NS1), a highly conserved, multifunctional accessory protein that inhibits the type I interferon response against influenza. Two potential anti-influenza agents, compounds 157 and 164, were identified with anti-NS1 activity, resulting in the reduction of A/PR/8/34(H1N1) influenza A virus replication and the restoration of IFN-ß expression in human lung epithelial A549 cells. A 3D pharmacophore modeling study of the active compounds provided a glimpse of the structural motifs that may contribute to anti-influenza virus activity. This screening approach is amenable to a broader analysis of small molecule compounds to inhibit other viral targets.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Interferon Tipo I/metabolismo , Proteínas não Estruturais Virais/metabolismo , Influenza Humana/tratamento farmacológico , Vírus da Influenza A/genética , Antivirais/farmacologia , Antivirais/metabolismo , Replicação Viral
5.
Pathogens ; 12(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111463

RESUMO

Respiratory diseases caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV) are frequent causes of the hospitalization of children; nonetheless, RSV is responsible for the most severe and life-threatening illnesses. Viral infection triggers an inflammatory response, activating interferon (IFN)-mediated responses, including IFN-stimulated genes (ISG) expression with antiviral and immunomodulatory activities. In parallel, the reactive oxygen species (ROS) production activates nuclear factor erythroid 2-related factor 2 (NRF2), whose antioxidant activity can reduce inflammation by interacting with the NF-kB pathway and the IFN response. To clarify how the interplay of IFN and NRF2 may impact on clinical severity, we enrolled children hospitalized for bronchiolitis and pneumonia, and measured gene expression of type-I and III IFNs, of several ISGs, of NRF2 and antioxidant-related genes, i.e., glucose-6-phosphate dehydrogenase (G6PD), heme oxygenase 1 (HO1), and NAD(P)H dehydrogenase [Quinone] 1 (NQO1) in RSV- (RSV-A N = 33 and RSV-B N = 30) and HRV (N = 22)-positive respiratory samples. NRF2 and HO1 expression is significantly elevated in children with HRV infection compared to RSV (p = 0.012 and p = 0.007, respectively), whereas ISG15 and ISG56 expression is higher in RSV-infected children (p = 0.016 and p = 0.049, respectively). Children admitted to a pediatric intensive care unit (PICU) had reduced NRF2 expression (p = 0.002). These data suggest, for the first time, that lower activation of the NRF2 antioxidant response in RSV-infected infants may contribute to bronchiolitis severity.

6.
FASEB J ; 37(2): e22729, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583688

RESUMO

Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Replicação Viral , Processamento de Proteína Pós-Traducional
7.
FASEB J ; 37(2): e22741, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583713

RESUMO

The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Proteínas Virais/metabolismo , Células HEK293 , Ligação Proteica , Compostos de Sulfidrila/farmacologia
8.
ACS Omega ; 7(49): 45253-45264, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530301

RESUMO

Peptide nucleic acids (PNAs) play a key role in prebiotic chemistry as a chimera between RNA and proteins. We developed an alternative synthesis of bioactive PNA's diaminopurine and guanine analogues from prebiotic compounds, such as aminomalononitrile (AMN), urea, and guanidine, using a two-step multicomponent microwave-assisted and solvent-free approach in the presence of selected amino acids. The novel derivatives showed selective inhibitory activity against influenza virus A/Puerto Rico/8/34 H1N1 encompassing the range of nanomolar activity. Derivatives decorated with the tyrosine residue showed the highest inhibitory activity against the virus.

9.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145282

RESUMO

Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.

10.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806198

RESUMO

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Assuntos
Herpesvirus Humano 1 , Anfíbios , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Herpesvirus Humano 1/fisiologia , Replicação Viral
11.
Front Med (Lausanne) ; 9: 921675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872763

RESUMO

Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. Modifications of gut microbiota seem to be associated with the disease, but the impact of gut microbiota on therapies' outcome remains unclear. A role of T cells in RA pathogenesis has been addressed, particularly on the Th17/Treg cells balance. Our study aimed to evaluate in early RA (ERA) patients compared to a control group, fecal gut microbiota composition, short-chain fatty acids concentrations, and the levels of circulating Th17/Treg and their own cytokines, before and after 3 months of standard treatment (Methotrexate (MTX) plus glucocorticoids). Fecal microbiota characterization was carried out on 19 ERA patients and 20 controls matched for sex and age. Significant decreased biodiversity levels, and a partition on the base of the microbiota composition, between the ERA patients at baseline compared to controls, were observed. The co-occurrent analysis of interactions revealed a characteristic clustered structure of the microbial network in controls that is lost in ERA patients where an altered connection between microbes and clinical parameters/metabolites has been reported. Microbial markers such as Acetanaerobacterium elongatum, Cristiansella massiliensis, and Gracilibacter thermotolerans resulted significantly enriched in control group while the species Blautia gnavus emerged to be more abundant in ERA patients. Our results showed an alteration in Th17/Treg balance with higher Th17 levels and lower Treg levels in ERA group respect to control at baseline, those data improved after therapy. Treatment administration and the achievement of a low disease activity/remission appear to exert a positive pressure on the structure of intestinal microbiota with the consequent restoration of biodiversity, of the structure of microbial network, and of the abundance of taxa that became closer to those presented by the subject without the disease. We also found an association between Blautia gnavus and ERA patients characterized by a significant reduction of propionic acid level. Furthermore significant differences highlighted at baseline among controls and ERA patients are no more evident after treatment. These data corroborate the role played by gut microbiota in the disease and suggest that therapy aimed to restore gut microbiota would improve treatment outcome.

12.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683025

RESUMO

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) Candida species and Cryptococcus neoformans, with MIC50 between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC80 ranging from 4 to 32 µM, and (iii) Aspergillus strains with MIC80 of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of Candida albicans cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some C. albicans virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast-mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30-35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.


Assuntos
Antifúngicos , Candida albicans , Animais , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros , Biofilmes , Testes de Sensibilidade Microbiana , Fatores de Virulência/farmacologia
13.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744845

RESUMO

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Assuntos
Anti-Infecciosos , Eucalyptus , Vírus da Influenza A Subtipo H1N1 , Melaleuca , Óleos Voláteis , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Eucalyptus/química , Melaleuca/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia
14.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216177

RESUMO

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Assuntos
Proteínas de Anfíbios/farmacologia , Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/química , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lipídeos/química , SARS-CoV-2/efeitos dos fármacos , Células Vero
15.
J Photochem Photobiol ; 8: 100082, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729540

RESUMO

Difficulty in controlling SARS-CoV-2 transmission made the ability to inactivate viruses in aerosols and fomites to be an important and attractive risk reduction measure. Evidence that light frequencies have the ability to inhibit microorganisms has already been reported by many studies which, however, focused on ultraviolet (UV) wavelengths, which are known to induce potential injury in humans. In the present study, the effect on suspensions of SARS-CoV-2 of a Light Emitting Diode (LED) device capable of radiating frequencies in the non-hazardous visible light spectrum (VIS) was investigated. In order to evaluate the efficiency of viral inactivation, plaque assay and western blot of viral proteins were performed. The observed results showed a significant reduction in infectious particles that had been exposed to the LED irradiation of visible light. Furthermore, the analysis of the intracellular expression of viral proteins confirmed the inactivating effect of this irradiation technology. This in vitro study revealed for the first time the inactivation of SARS-CoV-2 through LED irradiation with multiple wavelengths of the visible spectrum. However additional and more in-depth studies can aim to demonstrate the data obtained during these experiments in different matrices, in mutable environmental conditions and on other respiratory viruses such as the influenza virus. The type of LED technology can decisively contribute on reducing virus transmission through the continuous sanitation of common environments without risks for humans and animals.

16.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829949

RESUMO

Polyphenols have been widely studied for their antiviral effect against respiratory virus infections. Among these, resveratrol (RV) has been demonstrated to inhibit influenza virus replication and more recently, it has been tested together with pterostilbene against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present work, we evaluated the antiviral activity of polydatin, an RV precursor, and a mixture of polyphenols and other micronutrients, named A5+, against influenza virus and SARS-CoV-2 infections. To this end, we infected Vero E6 cells and analyzed the replication of both respiratory viruses in terms of viral proteins synthesis and viral titration. We demonstrated that A5+ showed a higher efficacy in inhibiting both influenza virus and SARS-CoV-2 infections compared to polydatin treatment alone. Indeed, post infection treatment significantly decreased viral proteins expression and viral release, probably by interfering with any step of virus replicative cycle. Intriguingly, A5+ treatment strongly reduced IL-6 cytokine production in influenza virus-infected cells, suggesting its potential anti-inflammatory properties during the infection. Overall, these results demonstrate the synergic and innovative antiviral efficacy of A5+ mixture, although further studies are needed to clarify the mechanisms underlying its inhibitory effect.

17.
J Enzyme Inhib Med Chem ; 36(1): 2128-2138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583607

RESUMO

Influenza viruses represent a major threat to human health and are responsible for seasonal epidemics, along with pandemics. Currently, few therapeutic options are available, with most drugs being at risk of the insurgence of resistant strains. Hence, novel approaches targeting less explored pathways are urgently needed. In this work, we assayed a library of nitrobenzoxadiazole derivatives against the influenza virus A/Puerto Rico/8/34 H1N1 (PR8) strain. We identified three promising 4-thioether substituted nitrobenzoxadiazoles (12, 17, and 25) that were able to inhibit viral replication at low micromolar concentrations in two different infected cell lines using a haemagglutination assay. We further assessed these molecules using an In-Cell Western assay, which confirmed their potency in the low micromolar range. Among the three molecules, 12 and 25 displayed the most favourable profile of activity and selectivity and were selected as hit compounds for future optimisation studies.


Assuntos
4-Cloro-7-nitrobenzofurazano/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/química , Animais , Antivirais/síntese química , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 224: 113683, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273661

RESUMO

The worldwide circulation of different viruses coupled with the increased frequency and diversity of new outbreaks, strongly highlight the need for new antiviral drugs to quickly react against potential pandemic pathogens. Broad-spectrum antiviral agents (BSAAs) represent the ideal option for a prompt response against multiple viruses, new and re-emerging. Starting from previously identified anti-flavivirus hits, we report herein the identification of promising BSAAs by submitting the multi-target 2,6-diaminopurine chemotype to a system-oriented optimization based on phenotypic screening on cell cultures infected with different viruses. Among the synthesized compounds, 6i showed low micromolar potency against Dengue, Zika, West Nile and Influenza A viruses (IC50 = 0.5-5.3 µM) with high selectivity index. Interestingly, 6i also inhibited SARS-CoV-2 replication in different cell lines, with higher potency on Calu-3 cells that better mimic the SARS-CoV-2 infection in vivo (IC50 = 0.5 µM, SI = 240). The multi-target effect of 6i on flavivirus replication was also analyzed in whole cell studies (in vitro selection and immunofluorescence) and against isolated host/viral targets.


Assuntos
Antivirais/química , Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Purinas/química , Purinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Terapia de Alvo Molecular , Replicação Viral/efeitos dos fármacos
19.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208020

RESUMO

Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegenerative processes related to age-related disorders such as Alzheimer's disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins. By exploiting both in vitro and in vivo models of recurrent HSV-1 infection, we found a significant increase in H4K16ac, Sin3, and HDAC1 levels, suggesting that the neuronal response to virus latency and reactivation includes the upregulation of these aging markers. On the contrary, we found a significant decrease in H3K56ac that was specifically linked to viral reactivation and apparently not related to aging-related markers. A complex modulation of HIRA expression and localization was found in the brain from HSV-1 infected mice suggesting a specific role of this protein in viral latency and reactivation. Overall, our results pointed out novel molecular mechanisms through which recurrent HSV-1 infection may affect neuronal aging, likely contributing to neurodegeneration.


Assuntos
Senescência Celular , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Modelos Biológicos , Neurônios/patologia , Neurônios/virologia , Acetilação , Animais , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Chaperonas de Histonas/metabolismo , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratos Wistar , Recidiva , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Fatores de Transcrição/metabolismo , Latência Viral
20.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803165

RESUMO

The resinous exudate produced by Commiphora myrrha (Nees) Engl. is commonly known as true myrrh and has been used since antiquity for several medicinal applications. Hundreds of metabolites have been identified in the volatile component of myrrh so far, mainly sesquiterpenes. Although several efforts have been devoted to identifying these sesquiterpenes, the phytochemical analyses have been performed by gas-chromatography/mass spectrometry (GC-MS) where the high temperature employed can promote degradation of the components. In this work, we report the extraction of C. myrrha by supercritical CO2, an extraction method known for the mild extraction conditions that allow avoiding undesired chemical reactions during the process. In addition, the analyses of myrrh oil and of its metabolites were performed by HPLC and GC-MS. Moreover, we evaluated the antiviral activity against influenza A virus of the myrrh extracts, that was possible to appreciate after the addition of vitamin E acetate (α-tocopheryl acetate) to the extract. Further, the single main bioactive components of the oil of C. myrrha commercially available were tested. Interestingly, we found that both furanodienone and curzerene affect viral replication by acting on different steps of the virus life cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...