Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681828

RESUMO

Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs' viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter's methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.

2.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1017-1035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34617344

RESUMO

Pig production depends on a health and performance balance. An approach to improve intestinal health is the oregano essential oil (OEO) supplementation within a conventional diet. Intestinal integrity regulating effects, for example gene expression, of some feed ingredients are important key factors for that balance. We hypothesized that OEO affects the expression of genes associated with pigs' intestinal integrity. In four trials, a total of 86 pigs have been used. From weaning, the 'treated' group (n = 42) was additionally fed an oregano flavour additive [1500 mg/kg (7.5% pure OEO)] within the basal diet. The 'control' group (n = 44) was kept under identical environmental conditions, except the OEO. At age of 6 months, pigs were slaughtered with an average weight of 111.1 ± 10.9 kg. In addition to automatically generated 'Fat-o-Meter' (AutoFOM) data, carcass quality factors have been measured manually. Valuable cuts of meat, such as ham and belly, were significantly reduced in the OEO group. Effects of OEO on pigs' haematologic parameters were very limited. For transcriptome analysis, the most interesting microarray expression results have been listed in a table (topTable). Selected genes were technically validated by qPCR. As a result, few significant differences in animal development and meat quality have been found between the OEO treated and the control group. Depending on OEO supplementation, we found 93 differently regulated genes in the jejunal tissue (70 up, 23 down) and 60 in the ileal tissue (48 up, 12 down). Just three genes (GRIN3B [glutamate ionotropic receptor NMDA type subunit 3B], TJP1/ZO-1 [tight junction protein ZO-1] and one uncharacterized gene) were affected by OEO both in jejunum and ileum. qPCR validation revealed AKT serine/threonine kinase 3 (AKT3), Interferon (IFN) -ε, -ω, tight junction protein (TJP1)/ZO-1 (ZO-1) to be upregulated in the jejunum and C-C motif chemokine ligand 21 (CCL21) was upregulated in the ileum of pigs that were supplemented with OEO. OEO supplementation had limited effects on pigs' performance traits. However, we were able to demonstrate that OEO alters the expression of genes associated with adaptive immune response in pigs' small intestine. These findings help to explain OEOs' beneficial impact on pigs' intestinal integrity.


Assuntos
Hematologia , Óleos Voláteis , Origanum , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Perfilação da Expressão Gênica/veterinária , Íleo , Jejuno , Óleos Voláteis/farmacologia , Suínos
3.
Biology (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072812

RESUMO

Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines' expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.

4.
Cell Tissue Res ; 385(3): 769-783, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34008050

RESUMO

Transcription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Assuntos
Células da Granulosa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Bovinos , Feminino , Transdução de Sinais , Transfecção
5.
Cryobiology ; 99: 64-77, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485896

RESUMO

Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.


Assuntos
Preservação do Sêmen , Animais , Criopreservação/métodos , Epididimo , Masculino , Proteoma , Ruminantes , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides
6.
Reprod Domest Anim ; 55(10): 1275-1285, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32323384

RESUMO

Nrf2 is a master regulator for antioxidant machinery against oxidative stress in bovine preimplantation embryos. The endogenous or exogenous modulation of Nrf2-KEAP1 system in bovine embryos may contribute to the understanding of the mechanisms behind the response of embryos to stress conditions. Therefore, here we aimed to investigate the protective effect of quercetin on bovine preimplantation embryos exposed to higher atmospheric oxygen concentration. For that, blastocysts, which were developed from zygotes cultured in media supplemented with or without quercetin under high oxygen level (20%), were subjected intracellular ROS level and mitochondrial analysis, and determining blastocyst formation rate and total cell number. Moreover, mRNA and protein expression level of Nrf2 and selected downstream antioxidant genes were investigated in the resulting blastocysts. Quercetin supplementation in vitro culture did not affect cleavage and blastocyst rate until day 7. However, quercetin supplementation resulted in higher blastocyst total cell number and reduction of intracellular ROS level accompanied by increasing mitochondrial activity compared with control group in both day 7 and day 8 blastocysts. Moreover, quercetin supplementation induced mRNA and protein of Nrf2 with subsequent increase in the expression of downstream antioxidants namely: NQO1, PRDX1, CAT and SOD1 antioxidants. In conclusion, quercetin protects preimplantation embryos against oxidative stress and improves embryo viability through modulation of the Nrf2 signalling pathway.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Animais , Antioxidantes/farmacologia , Blastocisto , Bovinos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Transdução de Sinais
7.
Sci Rep ; 10(1): 2345, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047242

RESUMO

Dietary intake in early lactating cows is outmatched by milk production. These cows experience a negative energy balance, resulting in a distinct blood metabolism and poor reproductive function due to impaired ovulation and increased embryo loss. We hypothesize that oocytes from lactating cows undergoing transient metabolic stress exhibit a different epigenetic profile crucial for developmental competence. To investigate this, we collected oocytes from metabolically-profiled cows at early- and mid-postpartum stages and characterized their epigenetic landscape compared with control heifers using whole-genome bisulfite sequencing. Early-postpartum cows were metabolically deficient with a significantly lower energy balance and significantly higher concentrations of non-esterified fatty acids and beta-hydroxybutyrate than mid-postpartum animals and control heifers. Accordingly, 32,990 early-postpartum-specific differentially methylated regions (DMRs) were found in genes involved in metabolic pathways, carbon metabolism, and fatty acid metabolism, likely descriptive of the epigenetic regulation of metabolism in early-postpartum oocytes. DMRs found overlapping CpG islands and exons of imprinted genes such as MEST and GNAS in early-postpartum oocytes suggest that early lactation metabolic stress may affect imprint acquisition, which could explain the embryo loss. This whole-genome approach introduces potential candidate genes governing the link between metabolic stress and the reproductive outcome of oocytes.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Genoma , Lactação , Metaboloma , Oócitos/metabolismo , Animais , Bovinos , Ilhas de CpG , Feminino , Oócitos/citologia , Período Pós-Parto
8.
PLoS One ; 14(10): e0223753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31661494

RESUMO

Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.


Assuntos
Metilação de DNA , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Adesões Focais/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Bovinos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Ácido Hialurônico/administração & dosagem , Técnicas de Maturação in Vitro de Oócitos , Gravidez , Transcriptoma
9.
Sci Rep ; 9(1): 12851, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492906

RESUMO

Most high-yielding dairy cows enter a state of negative energy balance (NEB) during early lactation. This, in turn, results in changes in the level of various metabolites in the blood and follicular fluid microenvironment which contributes to disturbed fertility. Extracellular vesicles (EVs) are evolutionarily conserved communicasomes that transport cargo of miRNA, proteins and lipids. EV-coupled miRNAs have been reported in follicular fluid. However, the association between postpartum NEB and EV-coupled miRNA signatures in follicular fluid is not yet known. Energy balance analysis in lactating cows shortly after post-calving revealed that the majority of the cows exhibited transiently negative energy balance levels, whereas the remaining cows exhibited either consistently negative or consistently positive energy levels. Metabolic status was associated with EV-coupled miRNA composition in the follicular fluid. Cows experiencing NEB showed reduced expression of a large number of miRNAs while cows with positive energy balances primarily exhibited elevated expression of EV-coupled miRNAs. The miRNAs that were suppressed under NEB were found to be involved in various metabolic pathways. This is the first study to reveal the presence of an association between EV-coupled miRNA in follicular fluid and metabolic stress in dairy cows. The involvement of differentially expressed miRNAs in various pathways associated with follicular growth and oocyte maturation suggest the potential involvement of specific follicular miRNAs in oocyte developmental competence, which may partially explain reduced fertility in cows due to post-calving metabolic stress.


Assuntos
Bovinos/genética , Bovinos/metabolismo , Vesículas Extracelulares/genética , Líquido Folicular/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , Animais , Metabolismo Energético/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Lactação/metabolismo , Metaboloma , MicroRNAs/metabolismo , Período Pós-Parto/sangue , Período Pós-Parto/metabolismo
10.
Mol Reprod Dev ; 86(12): 2005-2019, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31544319

RESUMO

Sexually dimorphic differences in genome activity, which is orchestrated by transcription factors (TFs), could explain the differential response of male and female embryos to environmental stressors. To proof this hypothesis, the expression of cellular and extracellular TFs was investigated in male and female bovine embryos in vitro cultured either under low (5%) or high (20%) oxygen levels. The intracellular reactive oxygen species (ROS), total cell number, expression of nuclear factor (erythroid-derived 2) factor 2 (NFE2L2), Krüppel-like factor 4 (KLF4), notch receptor 1 (NOTCH1), E2F transcription factor 1 (E2F1), and SREBF2 along with extracellular vesicles (EVs) biogenesis genes were assessed at the blastocyst stage and their released EVs. Low blastocyst rate in both sexes due to oxidative stress (OS) was accompanied by increased ROS accumulation and reduced cell number in female embryos. The messenger RNA and protein levels of NFE2L2, as well as KLF4 expression, were higher in male embryos exposed to OS compared with female embryos. However, the expression of NOTCH1 and E2F1 was higher in female embryos cultured in high oxygen level. Male embryos exposed to OS released more EVs enriched with NFE2L2, superoxide dismutase 1, and NOTCH1 accompanied by elevated expression of EVs biogenesis genes. Accordingly, differential expression of TFs and their release into spent media could partially explain the sexual dimorphic response of bovine embryos to environmental stresses.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estresse Oxidativo , Caracteres Sexuais , Animais , Bovinos
11.
PLoS One ; 14(9): e0222513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536525

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.


Assuntos
Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/fisiologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Animais , Anticorpos Antivirais/imunologia , Cruzamento/métodos , Expressão Gênica/genética , Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Leucócitos Mononucleares/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Vacinação/métodos , Vacinas Virais/imunologia
12.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986945

RESUMO

Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H2O2 by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.


Assuntos
Células da Granulosa/metabolismo , Células da Granulosa/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Ovário/patologia , Ovário/fisiopatologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Sequência de Bases , Bovinos , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Theriogenology ; 121: 196-203, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172131

RESUMO

Confirmation of the pregnancy establishment at the very earliest day post-insemination increases the reproduction efficiency of high yielding dairy cows and farm profitability by allowing rebreeding of the non-pregnant cows. Inaccuracies in the currently available pregnancy detection tools to detect pregnancy establishment within the first 3 weeks post insemination extends the inter-calving interval and have contributed to the decline in profitability. Thus, development of non-invasive early pregnancy detection biomarkers could be proposed as alternative tools. MicroRNAs (miRNAs), a subclass of small non-coding RNAs are abundantly expressed in virtually all bio fluids circulation and have been associated with various pregnancy-related pathophysiological conditions. The study aimed to determine the expression of circulatory miRNAs in serum samples of pregnant and non-pregnant cows at day 19 and 24 post-insemination. Lactating Holstein-Friesian cows were estrous synchronized and inseminated with frozen semen. Blood samples were taken 19 and 24 days post-insemination. Serum samples were retrospectively categorized according to the pregnancy status of cows diagnosed 35 later using ultrasonography. Total RNA enriched with miRNAs was isolated from pooled (4 animals/pool) serum samples of pregnant and non-pregnant cows and subjected to cDNA synthesis. The expression of circulatory miRNAs was performed using PCR array containing primers 748 mature miRNAs. Results showed that a total of 302 and 316 miRNAs were detected in day 19 pregnant and non-pregnant cows, respectively. Similarly, 356 and 325 miRNAs were detected in day 24 pregnant and non-pregnant cows, respectively. Principal component analysis showed clear separation between pregnant and non-pregnant cows both at 19 and 24 days. We identified 8 and 23 differentially expressed miRNAs in the serum of pregnant cows of day 19 and 24, respectively. Interestingly, miR-433 and 4 other miRNAs (miR-487b, miR-495-3p, miR-376b-3p, and miR-323a-3p), which are homologous to the human pregnancy-associated C14MC miRNAs were among the differentially expressed miRNAs in day 19 and 24 pregnant cows, respectively. The adherens junction and ECM-interaction are among the pathways significantly enriched by predicted target genes of differentially expressed miRNAs. In conclusion, the expression of circulatory miRNAs in maternal blood serum of pregnant and non-pregnant cows showed distinct expression pattern and could suggest their potential involvement in early pregnancy establishment.


Assuntos
Bovinos/sangue , MicroRNAs/sangue , Prenhez/sangue , Animais , Biomarcadores/sangue , Bovinos/genética , Sincronização do Estro , Feminino , Gravidez , Testes de Gravidez/métodos , Testes de Gravidez/veterinária , Prenhez/genética , Análise de Componente Principal
14.
BMC Genomics ; 19(1): 424, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859035

RESUMO

BACKGROUND: Aberrant DNA methylation patterns of genes required for development are common in in vitro produced embryos. In this regard, we previously identified altered DNA methylation patterns of in vivo developed blastocysts from embryos which spent different stages of development in vitro, indicating carryover effects of suboptimal culture conditions on epigenetic signatures of preimplantation embryos. However, epigenetic responses of in vivo originated embryos to suboptimal culture conditions are not fully understood. Therefore, here we investigated DNA methylation patterns of in vivo derived bovine embryos subjected to in vitro culture condition before, during or after major embryonic genome activation (EGA). For this, in vivo produced 2-, 8- and 16-cell stage embryos were cultured in vitro until the blastocyst stage and blastocysts were used for genome-wide DNA methylation analysis. RESULTS: The 2- and 8-cell flushed embryo groups showed lower blastocyst rates compared to the 16-cell flush group. This was further accompanied by increased numbers of differentially methylated genomic regions (DMRs) in blastocysts of the 2- and 8-cell flush groups compared to the complete in vivo control ones. Moreover, 1623 genomic loci including imprinted genes were hypermethylated in blastocyst of 2-, 8- and 16-cell flushed groups, indicating the presence of genomic regions which are sensitive to the in vitro culture at any stage of embryonic development. Furthermore, hypermethylated genomic loci outnumbered hypomethylated ones in blastocysts of 2- and 16-cell flushed embryo groups, but the opposite occurred in the 8-cell group. Moreover, DMRs which were unique to blastocysts of the 2-cell flushed group and inversely correlated with corresponding mRNA expression levels were involved in plasma membrane lactate transport, amino acid transport and phosphorus metabolic processes, whereas DMRs which were specific to the 8-cell group and inversely correlated with corresponding mRNA expression levels were involved in several biological processes including regulation of fatty acids and steroid biosynthesis processes. CONCLUSION: In vivo embryos subjected to in vitro culture before and during major embryonic genome activation (EGA) are prone to changes in DNA methylation marks and exposure of in vivo embryos to in vitro culture during the time of EGA increased hypomethylated genomic loci in blastocysts.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/genética , Genômica , Animais , Bovinos , Cromossomos de Mamíferos/genética , Análise de Sequência de DNA
15.
Res Vet Sci ; 119: 45-51, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29857245

RESUMO

Mastitis is one of the costliest diseases affecting the world's dairy industry. The important contribution of complement Component 5 (C5) to phagocytosis, which plays a major role in the defence of the bovine mammary gland against infection, makes this component of innate immunity a potential contributor in defending udder against mastitis. The objectives of this study were to sequence and analyse the whole coding region of the C5 gene in Egyptian buffalo and cattle, to detect any nucleotide variations (polymorphisms) and to investigate their associations with milk somatic cell score (SCS) as an indicator of mastitis in dairy animals. We sequenced a buffalo C5 cDNA fragment of 5336 bp (KP221293) and a cattle C5 cDNA fragment of 5303 bp (KP221294), which included the whole coding region and 3-UTR. Buffalo and cattle C5 cDNA shared sequence identity of 99%. The predicted complement C5 proteins consist of 1677 amino acid residues in both animals, one amino acid less than in humans and three amino acids more than in mouse C5 protein. Comparing cDNA sequences of different animals revealed nine novel SNPs in buffalo and seven SNPs in cattle, with two of them being novel. The association analysis revealed that five SNPs in buffalo are highly associated with SCS; indicating the contribution of complement C5 variants in buffalo mastitis resistance. No significant associations were detected between C5 variants and SCS in cattle. This is the first report about C5 variants in buffalo and its association with SCS.


Assuntos
Búfalos , Bovinos , Complemento C5/genética , Mastite Bovina/genética , Animais , Egito , Feminino , Leite , Polimorfismo de Nucleotídeo Único
16.
J Ovarian Res ; 11(1): 34, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716627

RESUMO

BACKGROUND: The granulosa cells are indispensable for follicular development and its function is orchestrated by several genes, which in turn posttranscriptionally regulated by microRNAs (miRNA). In our previous study, the miRRNA-424/503 cluster was found to be highly abundant in bovine granulosa cells (bGCs) of preovulatory dominant follicle compared to subordinate counterpart at day 19 of the bovine estrous cycle. Other study also indicated the involvement of miR-424/503 cluster in tumour cell resistance to apoptosis suggesting this miRNA cluster may involve in cell survival. However, the role of miR-424/503 cluster in granulosa cell function remains elusive Therefore, this study aimed to investigate the role of miRNA-424/503 cluster in bGCs function using microRNA gain- and loss-of-function approaches. RESULTS: The role of miR-424/503 cluster members in granulosa cell function was investigated by overexpressing or inhibiting its activity in vitro cultured granulosa cells using miR-424/503 mimic or inhibitor, respectively. Luciferase reporter assay showed that SMAD7 and ACVR2A are the direct targets of the miRNA-424/503 cluster members. In line with this, overexpression of miRNA-424/503 cluster members using its mimic and inhibition of its activity by its inhibitor reduced and increased, respectively the expression of SMAD7 and ACVR2A. Furthermore, flow cytometric analysis indicated that overexpression of miRNA-424/503 cluster members enhanced bGCs proliferation by promoting G1- to S- phase cell cycle transition. Modulation of miRNA-424/503 cluster members tended to increase phosphorylation of SMAD2/3 in the Activin signalling pathway. Moreover, sequence specific knockdown of SMAD7, the target gene of miRNA-424/503 cluster members, using small interfering RNA also revealed similar phenotypic and molecular alterations observed when miRNA-424/503 cluster members were overexpressed. Similarly, to get more insight about the role of miRNA-424/503 cluster members in activin signalling pathway, granulosa cells were treated with activin A. Activin A treatment increased cell proliferation and downregulation of both miRNA-424/503 members and its target gene, indicated the presence of negative feedback loop between activin A and the expression of miRNA-424/503. CONCLUSION: This study suggests that the miRNA-424/503 cluster members are involved in regulating bovine granulosa cell proliferation and cell cycle progression. Further, miRNA-424/503 cluster members target the SMAD7 and ACVR2A genes which are involved in the activin signalling pathway.


Assuntos
Receptores de Activinas Tipo II/genética , Células da Granulosa/metabolismo , MicroRNAs/genética , Proteína Smad7/genética , Ativinas/genética , Animais , Apoptose/genética , Bovinos , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Ciclo Estral/genética , Feminino , Células da Granulosa/patologia , Humanos , Transdução de Sinais
17.
PLoS One ; 12(11): e0187569, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117219

RESUMO

Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 µM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative stress released exosomes enriched with mRNA of Nrf2 and candidate antioxidants. Subsequent co-incubation of StressExo with cultured granulosa cells could alter the relative abundance of cellular oxidative stress response molecules including Nrf2 and antioxidants CAT, PRDX1 and TXN1. The present study provide evidences that granulosa cells exposed to oxidative stress conditions react to stress by activating cascades of cellular antioxidant molecules which can also be released into extracellular environment through exosomes.


Assuntos
Exossomos/metabolismo , Células da Granulosa/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Catalase/metabolismo , Bovinos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
PLoS One ; 12(11): e0187735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29140992

RESUMO

The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system generally defends against infectious diseases, especially dendritic cells (DCs), which play a crucial role in the activation of the immune response after viral infections. However, the understanding of the immune response and the genetic impact on the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we investigated the regulation of the host immune response to PRRSV in porcine lung DCs using RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc) were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24 hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine genes, which included breed-specific differentially expressed immune genes. Pietrain and Duroc infected lung DCs showed opposite gene expression courses during the first time points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-dependent co-expressed groups of genes that were involved in immune-relevant pathways. Key clusters and pathways were identified, which help to explain the biological and functional background of lung DCs post PRRSV infection and suggest IL-1ß1 as an important candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for each breed. PRRSV was able to infect and to replicate differently in lung DCs between the two mentioned breeds. These results could be useful in investigations on immunity traits in pig breeding and enhancing the health of pigs.


Assuntos
Células Dendríticas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Transcriptoma , Animais , Células Dendríticas/patologia , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Família Multigênica , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos
19.
J Genet ; 96(1): 65-73, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28360391

RESUMO

Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.


Assuntos
Búfalos/genética , Complemento C3/genética , Resistência à Doença/genética , Mastite Bovina/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Búfalos/imunologia , Bovinos , Complemento C3/química , Complemento C3/imunologia , DNA Complementar/química , DNA Complementar/genética , Resistência à Doença/imunologia , Egito , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Genótipo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mastite Bovina/imunologia , Modelos Moleculares , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Análise de Sequência de DNA
20.
PLoS One ; 12(3): e0171828, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278192

RESUMO

The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Celular/imunologia , Leucócitos Mononucleares/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/imunologia , Vacinas Virais/uso terapêutico , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos/genética , Suínos/virologia , Linfócitos T/imunologia , Transcriptoma , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...