Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(39): 12080-12087, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39315689

RESUMO

DNA origami nanotechnology has great potential in multiple fields including biomedical, biophysical, and nanofabrication applications. However, current production pipelines lead to single-use devices incorporating a small fraction of initial reactants, resulting in a wasteful manufacturing process. Here, we introduce two complementary approaches to overcome these limitations by recycling the strand components of DNA origami nanostructures (DONs). We demonstrate reprogramming entire DONs into new devices, reusing scaffold strands. We validate this approach by reprogramming DONs with complex geometries into each other, using their distinct geometries to verify successful scaffold recycling. We reprogram one DON into a dynamic structure and show both pristine and recycled structures display similar properties. Second, we demonstrate the recovery of excess staple strands postassembly and fold DONs with these recycled strands, showing these structures exhibit the expected geometry and dynamic properties. Finally, we demonstrate the combination of both approaches, successfully fabricating DONs solely from recycled DNA components.


Assuntos
DNA , Nanoestruturas , Nanotecnologia , DNA/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...