Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
3.
BMC Pulm Med ; 23(1): 441, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964259

RESUMO

BACKGROUND: Little is known about the differences in medium to long-term recovery on spirometry, 6-minute walking distance (6MWD) and health-related quality of life (HRQoL) between COVID-19 and SARS. METHODS: We performed a 12-month prospective study on COVID-19 survivors. The changes in dynamic lung volumes at spirometry (%predicted FEV1, %predicted FVC), 6MWD and HRQoL at 1-3, 6 to 12 months were compared against a historical cohort of SARS survivors using the same study protocol. The residual radiological changes in HRCT in COVID-19 survivors were correlated with their functional capacity. RESULTS: 108 COVID-19 survivors of various disease severity (asymptomatic 2.9%, mild 33.3%, moderate 47.2%, severe 8.3%, critical 8.3%) were recruited. When compared with 97 SARS survivors, 108 COVID-19 survivors were older (48.1 ± 16.4 vs. 36.1 ± 9.5 years, p < 0.001) and required less additional support during hospitalization; with lower dynamic lung volumes, shorter 6MWD and better physical component score. Both groups of survivors had comparable changes in these parameters at subsequent follow-ups. Both COVID-19 and SARS survivors had similar mental component score (MCS) at 6 and 12 months. COVID-19 survivors initially experienced less (between-group difference, -3.1, 95% confidence interval [CI] -5.5 to -0.7, p = 0.012) and then more improvement (between-group difference 2.9, 95%, CI 0.8 to 5.1, p = 0.007) than SARS survivors in the MCS at 1-3 to 6 months and 6 to 12 months respectively. Forty (44.0%) out of 91 COVID-19 survivors had residual abnormalities on HRCT at 12 months, with a negative correlation between the severity scores of parenchymal changes and 6MWD (r=-0.239, p < 0.05). CONCLUSIONS: COVID-19 survivors demonstrated a similar recovery speed in dynamic lung volumes and exercise capacity, but different paces of psychological recovery as SARS survivors in the convalescent phase. The severity of parenchymal changes in HRCT is negatively correlated with the 6MWD of COVID-19 survivors. TRIAL REGISTRATION: This prospective study was registered at ClinicalTrials.gov on 2 November 2020 (Identifier: NCT04611243).


Assuntos
COVID-19 , Qualidade de Vida , Humanos , Estudos Prospectivos , Testes de Função Respiratória , Espirometria
4.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917177

RESUMO

Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.


Assuntos
Interleucina-10 , Infecções por Protozoários , Células Th1 , Células Th1/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Leishmania donovani , Leishmaniose Visceral/imunologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Infecções por Protozoários/imunologia , Humanos , Animais , Camundongos , Proteína do Gene 3 de Ativação de Linfócitos/antagonistas & inibidores , Interferon gama/metabolismo , Ligação Proteica , Regiões Promotoras Genéticas/imunologia , Modelos Animais de Doenças
5.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37781920

RESUMO

The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.


Assuntos
Interferon Tipo I , Malária Falciparum , Linfócitos T Reguladores , Humanos , Linfócitos T CD4-Positivos , Interferon Tipo I/imunologia , Malária Falciparum/imunologia , Linfócitos T Reguladores/imunologia
6.
Int J Infect Dis ; 133: 60-66, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182546

RESUMO

OBJECTIVES: We compared the risk of environmental contamination among patients with COVID-19 who received high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), and conventional oxygen therapy (COT) via nasal cannula for respiratory failure. METHODS: Air was sampled from the hospital isolation rooms with 12 air changes/hr where 26 patients with COVID-19 received HFNC (up to 60 l/min, n = 6), NIV (n = 6), or COT (up to 5 l/min of oxygen, n = 14). Surface samples were collected from 16 patients during air sampling. RESULTS: Viral RNA was detected at comparable frequency in air samples collected from patients receiving HFNC (3/54, 5.6%), NIV (1/54, 1.9%), and COT (4/117, 3.4%) (P = 0.579). Similarly, the risk of surface contamination was comparable among patients receiving HFNC (3/46, 6.5%), NIV (14/72, 19.4%), and COT (8/59, 13.6%) (P = 0.143). An increment in the cyclic thresholds of the upper respiratory specimen prior to air sampling was associated with a reduced SARS-CoV-2 detection risk in air (odds ratio 0.83 [95% confidence interval 0.69-0.96], P = 0.027) by univariate logistic regression. CONCLUSION: No increased risk of environmental contamination in the isolation rooms was observed in the use of HFNC and NIV vs COT among patients with COVID-19 with respiratory failure. Higher viral load in the respiratory samples was associated with positive air samples.


Assuntos
COVID-19 , Insuficiência Respiratória , Humanos , COVID-19/complicações , SARS-CoV-2 , Oxigênio , Oxigenoterapia/efeitos adversos , Insuficiência Respiratória/terapia , Insuficiência Respiratória/etiologia
7.
Lancet Microbe ; 4(6): e418-e430, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086735

RESUMO

BACKGROUND: The primary aim of using vaccines in public health responses to SARS-CoV-2 variants of concern is to reduce incidence of severe disease, for which T-cell responses are essential. There is a paucity of data on vaccine-induced T-cell immunity to omicron (B.1.1.529). We aimed to compare SARS-CoV-2 omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2. METHODS: For this observational cohort, we recruited adults (aged ≥18 years) from three vaccination centres in Hong Kong. We included participants from four cohorts (cohort 1: participants who received two doses of either BNT162b2 or CoronaVac, cohort 2: participants who received two doses and a booster, cohort 3: participants who received two doses and a booster and had a breakthrough omicron infection, and cohort 4: participants who had a previous non-omicron infection and subsequently received one dose of vaccine). People with confirmed history of COVID-19 at recruitment were excluded from cohort 1 and cohort 2. We collected blood samples before vaccination (for cohort 1 and 2), 1-month following vaccination (for all cohorts), and during convalescence for cohort 3 and 4) and determined the proportion of IFNγ+CD4+ and IFNγ+CD8+ T cells in peripheral blood against SARS-CoV-2 using flow cytometry with peptide pools of SARS-CoV-2 wild type or omicron BA.1. The primary outcome was proportion of CD4+ and CD8+ T cells against SARS-CoV-2 1 month after exposure (ie, vaccination or breakthrough infection). FINDINGS: Overall, between May 21, 2020, and Aug 31, 2021, we recruited 659 participants (231 [35%] men and 428 [65%] women). Of these participants, 428 were included in cohort 1 (214 [50%] received BNT162b2 and 214 [50%] received CoronaVac); 127 in cohort 2 (48 [38%] received all BNT162b2, 40 [31%] received all CoronaVac, and 39 [31%] received two CoronaVac and a booster with BNT162b2); 58 in cohort 3, and 46 in cohort 4 (16 [35%] received CoronaVac and 30 [65%] received BNT162b2). Vaccine-induced T-cell responses to the wild-type and omicron BA.1 variants were generally similar in adults receiving two doses of either CoronaVac (CD4+ cells p=0·33; CD8+ cells p=0·70) or BNT162b2 (CD4+ cells p=0·28; CD8+ cells p=1·0). Using a peptide pool of all structural proteins for stimulation, BNT162b2 induced a higher median frequency of omicron-specific CD4+ T cells in adults younger than 60 years (CD4+ cells 0·012% vs 0·010%, p=0·031; CD8+ cells 0·003% vs 0·000%, p=0·055) and omicron-specific CD8+ T cells in people aged 60 years or older (CD4+ cells 0·015% vs 0·006%, p=0·0070; CD8+ cells 0·007% vs 0·000%, p=0·035). A booster dose of either BNT162b2 or CoronaVac after two doses of CoronaVac boosted waning T-cell responses, but T-cell responses did not exceed those at 1 month after the second dose (CoronaVac CD4+ p=0·41, CD8+ p=0·79; BNT162b2 CD4+ p=0·70 CD8+ p=0·80). INTERPRETATION: The evidence that mRNA and inactivated vaccines based on the ancestral SARS-CoV-2 virus elicited T-cell responses to SARS-CoV-2 omicron variants might explain the high observed vaccine effectiveness against severe COVID-19 shown by both types of vaccine, despite great differences in neutralising antibody responses. The use of either vaccine can be considered if the primary aim is to reduce severity and death caused by the new omicron subvariants; however, BNT162b2 is preferable for adults older than 60 years. FUNDING: The Health and Medical Research Fund Commissioned Research on the Novel Coronavirus Disease and S H Ho Foundation.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Masculino , Humanos , Adulto , Feminino , Adolescente , Vacina BNT162 , Hong Kong/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Infecções Irruptivas , Estudos de Coortes
8.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020833

RESUMO

Background: The clinical impact of phenotyping empyema is poorly described. This study was designed to evaluate clinical characteristics and outcomes based on the two readily available parameters, pleural fluid culture status and macroscopic fluid appearance. Methods: A retrospective study was conducted on patients with empyema hospitalised between 2013 and 2020. Empyema was classified into culture-positive empyema (CPE) or culture-negative empyema (CNE) and pus-appearing empyema (PAE) or non-pus-appearing empyema (non-PAE) based on the pleural fluid culture status and macroscopic fluid appearance, respectively. Results: Altogether, 212 patients had confirmed empyema (CPE: n=188, CNE: n=24; PAE: n=118, non-PAE: n=94). The cohort was predominantly male (n=163, 76.9%) with a mean age of 65.0±13.6 years. Most patients (n=180, 84.9%) had at least one comorbidity. Patients with CPE had higher rates of in-hospital mortality (19.1% versus 0.0%, p=0.017) and 90-day mortality (18.6% versus 0.0%, p=0.017) and more extrapulmonary sources of infection (29.8% versus 8.3%, p=0.026) when compared with patients with CNE. No significant difference in mortality rate was found between PAE and non-PAE during the in-hospital stay and at 30 days and 90 days. Patients with PAE had less extrapulmonary sources of infection (20.3% versus 36.2%, p=0.010) and more anaerobic infection (40.9% versus 24.5%, p=0.017) than those with non-PAE. The median RAPID (renal, age, purulence, infection source, and dietary factors) scores were higher in the CPE and non-PAE groups. After adjusting for covariates, culture positivity was not independently associated with mortality on multivariable analysis. Conclusion: Empyema is a heterogeneous disease with different clinical characteristics. Phenotyping empyema into different subclasses based on pleural fluid microbiological results and macroscopic fluid appearance provides insight into the underlying bacteriology, source of infection and subsequent clinical outcomes.

10.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594463

RESUMO

Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.


Assuntos
Malária , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Células Th1 , Interleucina-10 , Camundongos Endogâmicos C57BL , Malária/genética , Linfócitos T CD4-Positivos
11.
Nat Commun ; 13(1): 6806, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357381

RESUMO

Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Fezes/microbiologia , Síndrome de COVID-19 Pós-Aguda
12.
Gut Microbes ; 14(1): 2128603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201636

RESUMO

Dysbiosis of gut microbiota is well-described in patients with coronavirus 2019 (COVID-19), but the dynamics of antimicrobial resistance genes (ARGs) reservoir, known as resistome, is less known. Here, we performed longitudinal fecal metagenomic profiling of 142 patients with COVID-19, characterized the dynamics of resistome from diagnosis to 6 months after viral clearance, and reported the impact of antibiotics or probiotics on the ARGs reservoir. Antibiotic-naive patients with COVID-19 showed increased abundance and types, and higher prevalence of ARGs compared with non-COVID-19 controls at baseline. Expansion in resistome was mainly driven by tetracycline, vancomycin, and multidrug-resistant genes and persisted for at least 6 months after clearance of SARS-CoV-2. Patients with expanded resistome exhibited increased prevalence of Klebsiella sp. and post-acute COVID-19 syndrome. Antibiotic treatment resulted in further increased abundance of ARGs whilst oral probiotics (synbiotic formula, SIM01) significantly reduced the ARGs reservoir in the gut microbiota of COVID-19 patients during the acute infection and recovery phase. Collectively, these findings shed new insights on the dynamic of ARGs reservoir in COVID-19 patients and the potential role of microbiota-directed therapies in reducing the burden of accumulated ARGs.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Microbioma Gastrointestinal , Probióticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , COVID-19/complicações , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Humanos , Probióticos/uso terapêutico , SARS-CoV-2/genética , Tetraciclinas , Vancomicina , Síndrome de COVID-19 Pós-Aguda
13.
J Clin Virol ; 156: 105273, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36081282

RESUMO

BACKGROUND: BA.2.12.1, BA.4 and BA.5 subvariants of SARS-CoV-2 variant-of-concern (VOC) Omicron (B.1.1.529) are spreading globally. They demonstrate higher transmissibility and immune escape. OBJECTIVES: Determine BA.2.12.1, BA.4 and BA.5 virus plaque reduction neutralization test (PRNT) antibody titres in individuals recently vaccinated with BNT162b2 (n = 20) or CoronaVac (n = 20) vaccines or those convalescent from ancestral wild- type (WT) SARS-CoV-2 (n = 20) or BA.2 infections with (n = 17) or without (n = 7) prior vaccination. RESULTS: Relative to neutralization of the WT virus, those vaccinated with BNT162b2 had 4.8, 3.4, 4.6, 11.3 and 15.5-fold reductions of geometric mean antibody titres (GMT) to BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 viruses, respectively. Similarly, those vaccinated with CoronaVac had 8.0, 7.0, 11.8, 12.0 and 12.0 fold GMT reductions and those with two doses of CoronaVac boosted by BNT162b2 had 6.1, 6.7, 6,3, 13.0 and 21.2 fold GMT reductions to these viruses, respectively. Vaccinated individuals with BA.2 breakthrough infections had higher GMT antibody levels vs. BA.4 (36.9) and BA.5 (36.9) than unvaccinated individuals with BA.2 infections (BA.4 GMT 8.2; BA.5 GMT 11.0). CONCLUSIONS: BA.4 and BA.5 subvariants were less susceptible to BNT162b2 or CoronaVac vaccine elicited antibody neutralization than subvariants BA.1, BA.2 and BA.2.12.1. Nevertheless, three doses BNT162b2 or booster of BNT162b2 following two doses of CoronaVac elicited detectable BA.4 and BA.5 neutralizing antibody responses while those vaccinated with three doses of CoronaVac largely fail to do so. BA.2 infections in vaccinated individuals led to higher levels of BA.4 or BA.5 neutralizing antibody compared to those who were vaccine-naive.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
14.
Clin Transl Immunology ; 11(6): e1396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663920

RESUMO

Objectives: There is an urgent need to be able to identify individuals with asymptomatic Leishmania donovani infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4+ T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients. Methods: CD4+ T cells were isolated from individuals with asymptomatic L. donovani infection, endemic controls and VL patients. RNA was extracted and RNAseq employed to identify differentially expressed genes. The expression of one gene and its protein product during asymptomatic infection were evaluated. Results: Amphiregulin (AREG) was identified as a distinguishing gene product in CD4+ T cells from individuals with asymptomatic L. donovani infection, compared to VL patients and healthy endemic control individuals. AREG levels in plasma and antigen-stimulated whole-blood assay cell culture supernatants were significantly elevated in asymptomatic individuals, compared to endemic controls and VL patients. Regulatory T (Treg) cells were identified as an important source of AREG amongst CD4+ T-cell subsets in asymptomatic individuals. Conclusion: Increased Treg cell AREG expression was identified in individuals with asymptomatic L. donovani infection, suggesting the presence of an ongoing inflammatory response in these individuals required for controlling infection and that AREG may play an important role in preventing inflammation-induced tissue damage and subsequent disease in asymptomatic individuals.

15.
Euro Surveill ; 27(18)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514306

RESUMO

BackgroundOmicron subvariant BA.2 circulation is rapidly increasing globally.AimWe evaluated the neutralising antibody response from vaccination or prior SARS-CoV-2 infection against symptomatic infection by BA.2 or other variants.MethodsUsing 50% plaque reduction neutralisation tests (PRNT50), we assessed neutralising antibody titres to BA.2, wild type (WT) SARS-CoV-2 and other variants in Comirnaty or CoronaVac vaccinees, with or without prior WT-SARS-CoV-2 infection. Titres were also measured for non-vaccinees convalescing from a WT-SARS-CoV-2 infection. Neutralising antibodies in BA.2 and BA.1 breakthrough infections and in BA.2 infections affecting non-vaccinees were additionally studied.ResultsIn vaccinees or prior WT-SARS-CoV-2-infected people, BA.2 and BA.1 PRNT50 titres were comparable but significantly (p < 10 - 5) lower than WT. In each group of 20 vaccinees with (i) three-doses of Comirnaty, (ii) two CoronaVac followed by one Comirnaty dose, or (iii) one dose of either vaccine after a WT-SARS-CoV-2 infection, ≥ 19 individuals developed detectable (PRNT50 titre ≥ 10) antibodies to BA.2, while only 15 of 20 vaccinated with three doses of CoronaVac did. Comirnaty vaccination elicited higher titres to BA.2 than CoronaVac. In people convalescing from a WT-SARS-CoV-2 infection, a single vaccine dose induced higher BA.2 titres than three Comirnaty (p = 0.02) or CoronaVac (p = 0.00001) doses in infection-naïve individuals. BA.2 infections in previously uninfected and unvaccinated individuals elicited low (PRNT50 titre ≤ 80) responses with little cross-neutralisation of other variants. However, vaccinees with BA.1 or BA.2 breakthrough infections had broad cross-neutralising antibodies to WT viruses, and BA.1, BA.2, Beta and Delta variants.ConclusionsExisting vaccines can be of help against the BA.2 subvariant.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Hong Kong/epidemiologia , Humanos , Vacinação
16.
Cancers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326691

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor with variable responses to immune checkpoint therapy. The significance of the immune cell infiltrate in distant metastases, their association with the immune infiltrate in the primary tumors and their impact on prognosis are poorly described. We hypothesized that specific subtypes of immune cells may be involved in the control of metastases and may have an impact on the prognosis of ccRCC. We analyzed the immune microenvironment in ccRCC primary tumors with distant metastases, paired distant metastases and non-metastasized ccRCC (n = 25 each group) by immunohistochemistry. Confirmatory analyses for CD8+ and CD103+ cells were performed in a large ccRCC cohort (n = 241) using a TCGA-KIRC data set (ITGAE/CD103). High immune cell infiltration in primary ccRCC tumors was significantly correlated with the development of distant tumor metastasis (p < 0.05). A high density of CD103+ cells in ccRCC was more frequent in poorly differentiated tumors (p < 0.001). ccRCCs showed high levels of ITGAE/CD103 compared with adjacent non-neoplastic tissue. A higher density of CD103+ cells and a higher ITGAE/CD103 expression were significantly correlated with poor overall survival in ccRCC (log rank p < 0.05). Our results show a major prognostic value of the immune pattern, in particular CD103+ cell infiltration in ccRCC, and highlight the importance of the tumor immune microenvironment.

17.
Clin Exp Ophthalmol ; 50(4): 398-406, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218134

RESUMO

BACKGROUND: We investigated the ocular surface disturbances in COVID-19 patients discharged from the hospital. METHODS: One hundred and seventy-nine eyes of 109 healthy participants and 456 eyes of 228 post-COVID-19 patients received comprehensive eye examinations; the latter were interviewed with questionnaires on ocular symptoms before and after COVID-19 diagnosis. Associations of ocular surface manifestations with virological and ophthalmic parameters were evaluated by multivariable mixed linear or logistic regression models. RESULTS: Mean interval between COVID-19 diagnosis and ophthalmic evaluation was 52.23 ± 16.12 days. The severity of meibomian gland dysfunction (MGD) based on clinical staging was higher in post-COVID-19 than healthy eyes (1.14 ± 0.67 vs. 0.92 ± 0.68, p = 0.002) and so was ocular surface staining score (0.60 ± 0.69 vs. 0.49 ± 0.68, p = 0.044). Patients requiring supplementary oxygen during hospitalisation had shorter tear break-up time (ß -1.63, 95% CI -2.61 to -0.65). Cycle threshold (Ct) value from upper respiratory samples (inversely correlated with viral load) at diagnosis had an OR = 0.91 (95% CI 0.84-0.98) with new ocular surface symptoms 4 weeks after diagnosis. The presence of ocular surface symptoms 1 week prior to COVID-19 diagnosis showed an OR of 20.89 (95% CI 6.35-68.66) of persistent or new ocular symptoms 4 weeks afterward. CONCLUSIONS: MGD and ocular surface staining are more common and severe in post-COVID-19 patients. Patients with higher viral loads have greater risks of ocular surface symptoms. Patients requiring supplementary oxygen are more likely to show tear film instability. Ocular surface evaluation should be considered 1-3 months following hospital discharge for any COVID-19 patient.


Assuntos
COVID-19 , Síndromes do Olho Seco , Doenças Palpebrais , Disfunção da Glândula Tarsal , COVID-19/epidemiologia , Teste para COVID-19 , Síndromes do Olho Seco/diagnóstico , Humanos , Glândulas Tarsais , Oxigênio , Lágrimas
18.
Nat Med ; 28(3): 486-489, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051989

RESUMO

The Omicron variant is rapidly becoming the dominant SARS-CoV-2 virus circulating globally. It is important to define reductions in virus neutralizing activity in the serum of convalescent or vaccinated individuals to understand potential loss of protection against infection by Omicron. We previously established that a 50% plaque reduction neutralization antibody titer (PRNT50) ≥25.6 in our live virus assay corresponded to the threshold for 50% protection from infection against wild-type (WT) SARS-CoV-2. Here we show markedly reduced serum antibody titers against the Omicron variant (geometric mean titer (GMT) < 10) compared to WT virus 3-5 weeks after two doses of BNT162b2 (GMT = 218.8) or CoronaVac vaccine (GMT = 32.5). A BNT162b2 booster dose elicited Omicron PRNT50 titers ≥25.6 in 88% of individuals (22 of 25) who previously received 2 doses of BNT162b2 and 80% of individuals (24 of 30) who previously received CoronaVac. However, few (3%) previously infected individuals (1 of 30) or those vaccinated with three doses of CoronaVac (1 of 30) met this threshold. Our findings suggest that countries primarily using CoronaVac vaccines should consider messenger RNA vaccine boosters in response to the spread of Omicron. Studies evaluating the effectiveness of different vaccines against the Omicron variant are urgently needed.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
19.
Res Sq ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35018372

RESUMO

Omicron, a novel SARS-CoV-2 variant has emerged and is rapidly becoming the dominant SARS-CoV-2 virus circulating globally. It is important to define reductions in virus neutralizing activity in serum of convalescent or vaccinated individuals to understand potential loss of protection from infection or re-infection. Two doses of BNT162b2 or CoronaVac vaccines provided little 50% plaque reduction neutralization test (PRNT 50 ) antibody immunity against the Omicron variant, even at one-month post vaccination. Booster doses with BNT162b2 in those with two doses of either BNT162b2 or CoronaVac provided acceptable neutralizing immunity against Omicron variant at 1-month post-booster dose. However, three doses of BNT162b2 elicited higher levels of PRNT 50 antibody to Omicron variant suggesting longer duration of protection. Convalescent from SARS-CoV-2 infection did not have protective PRNT 50 antibody levels to Omicron, but a single dose of BNT162b2 vaccine provided protective immunity. Field vaccine-efficacy studies against Omicron variant against different vaccines are urgently needed.

20.
Cancer Immunol Res ; 10(2): 154-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013002

RESUMO

Tumor antigen-specific CD8+ T cells play a critical role in antitumor immunity. Clinical trials reinvigorating the immune system via immune checkpoint blockade (ICB) have shown remarkable clinical promise. Numerous studies have identified an association between NKG7 expression and patient outcome across different malignancies. However, aside from these correlative observations, very little is known about NKG7 and its role in antitumor immunity. Herein, we utilized single-cell RNA sequencing (scRNA-seq) datasets, NKG7-deficient mice, NKG7-reporter mice, and mouse tumor models to investigate the role of NKG7 in neoantigen-mediated tumor rejection and ICB immunotherapy. scRNA-seq of tumors from patients with metastatic melanoma or head and neck squamous cell carcinoma revealed that NKG7 expression is highly associated with cytotoxicity and specifically expressed by CD8+ T cells and natural killer (NK) cells. Furthermore, we identified a key role for NKG7 in controlling intratumor T-cell accumulation and activation. NKG7 was upregulated on intratumor antigen-specific CD8+ T cells and NK cells and required for the accumulation of T cells in the tumor microenvironment. Accordingly, neoantigen-expressing mouse tumors grew faster in Nkg7-deficient mice. Strikingly, efficacy of single or combination ICB was significantly reduced in Nkg7-deficient mice.See related article by Wen et al., p. 162.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Proteínas de Membrana , Animais , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Células Matadoras Naturais , Melanoma/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...