Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1383896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835663

RESUMO

Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1ß, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1ß, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.

2.
J Ethnopharmacol ; 332: 118377, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38782307

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY: This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS: Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION: GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1ß signaling pathway and reduction in M1 macrophage polarization.


Assuntos
Artrite Experimental , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Artrite Reumatoide/tratamento farmacológico , Ratos Sprague-Dawley , Camundongos , Antirreumáticos/farmacologia , Antirreumáticos/isolamento & purificação , Antirreumáticos/química , Acetatos
3.
Biomed Pharmacother ; 165: 115274, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542856

RESUMO

With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...