Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 171: 105641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952830

RESUMO

Among diseases of the central nervous system (CNS), spinal cord injury (SCI) has a high fatality rate. It has been proven that P2Y G protein-coupled purinergic receptors have a neuroprotective role in apoptosis and regeneration inside the damaged spinal cord. The P2Y12 receptor (P2Y12R) has recently been linked to peripheral neuropathy and stroke. However, the role of P2Y12R after SCI remains unclear. Our study randomly divided C57BL/6J female mice into 3 groups: Sham+DMSO, SCI+DMSO, and SCI+MRS2395. MRS2395 as a P2Y12R inhibitor was intraperitoneally injected at a dose of 1.5 mg/kg once daily for 7 days. We showed that the P2Y12R was markedly activated after injury, and it was double labeled with the microglial and neuron. Behavioral tests were employed to assess motor function recovery. By using immunofluorescence staining, the NeuN expression level was detected. The morphology of neurons was observed by hematoxylin-eosin and Nissl staining. P2Y12R, Bax, GFAP, PCNA and calbindin expression levels were detected using Western blot. Meanwhile, mitochondria and myelin sheath were observed by transmission electron microscopy (TEM). Our findings demonstrated that MRS2395 significantly enhanced motor function induced by SCI and that was used to alleviate apoptosis and astrocyte scarring. NeuN positive cells in the SCI group were lower than in the therapy group, although Bax, GFAP, PCNA and calbindin expression levels were considerably higher. Moreover, following MRS2395 therapy, the histological damage was reversed. A notable improvement in myelin sheath and mitochondrial morphology was seen in the therapy group. Together, our findings indicate that activation of P2Y12R in damaged spinal cord may be a critical event and suggest that inhibition of P2Y12R might be a feasible therapeutic strategy for treating SCI.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Ratos , Camundongos , Feminino , Animais , Ratos Sprague-Dawley , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Recuperação de Função Fisiológica , Dimetil Sulfóxido/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Apoptose , Calbindinas
2.
Microsc Res Tech ; 86(10): 1378-1390, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37129001

RESUMO

Ferroptosis is a newly defined form of cell death involved in neurologic disease. Resveratrol is a non-flavonoid polyphenolic compound with anti-inflammatory and antioxidant properties, but its potential therapeutic mechanism in spinal cord injury (SCI) remains unknown. Therefore, this study evaluates the mechanism by which resveratrol promotes neurological and motor function recovery in mice with SCI. The motor function of mice was evaluated using the Basso Mouse Scale score and footprint test. The effect of resveratrol on the neuronal cell state was observed using NeuN, fluoro-Jade C, and Nissl staining. The expression of iron content in injured segments was observed using Perls blue and Diaminobenzidine staining. The effect of resveratrol on the levels of malondialdehyde, glutathione, Fe2+ , and glutathione peroxidase 4 enzyme activity was also investigated. The mitochondrial ultrastructures of injured segment cells were observed using transmission electron microscope, while the protein levels of ferroptosis-related targets were detected using Western blot. Our findings show that resveratrol improves motor function after SCI and has certain neuroprotective effects; in ferroptosis-related studies, resveratrol inhibited the expression of ferroptosis-related proteins and ions. Resveratrol improved changes in mitochondrial morphology. Mechanistically, the Nrf2 inhibitor ML385 reversed the inhibitory effect of resveratrol on ferroptosis-related genes, indicating that resveratrol inhibits ferroptosis through the Nrf2/GPX4 pathway. Our findings elucidate that resveratrol promotes functional recovery, inhibits ferroptosis post-SCI, and provides an experimental basis for subsequent clinical translational research. Our study shows that resveratrol inhibits the production of lipid peroxide and the accumulation of iron by activating Nrf2/GPX4 signaling pathway, thereby inhibiting neuronal ferroptosis. At the same time, it can promote the recovery of motor function of mice.


Assuntos
Ferroptose , Traumatismos da Medula Espinal , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Ferro/metabolismo , Medula Espinal
3.
Anat Rec (Hoboken) ; 306(3): 638-650, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437694

RESUMO

Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Ferro
4.
Neural Plast ; 2022: 2191011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154311

RESUMO

The aim of this study was to investigate the effect of the P2Y2 receptor (P2Y2R) signaling pathway on neuronal regeneration and angiogenesis during spinal cord injury (SCI). The rats were randomly divided into 3 groups, including the sham+dimethyl sulfoxide (DMSO), SCI+DMSO, and SCI+P2Y2R groups. The SCI animal models were constructed. A locomotor rating scale was used for behavioral assessments. The apoptosis of spinal cord tissues was detected by TUNEL staining. The expression levels of P2Y2R, GFAP, nestin, Tuj1, and CD34 were detected by immunofluorescence staining, and the expression levels of TNF-α, IL-1ß, and IL-6 were detected by enzyme-linked immunosorbent assay. The locomotor score in the model group was significantly lower than the sham group. The expression of P2Y2R was increased after SCI. The expression levels of TNF-α, IL-1ß, and IL-6 were increased remarkably in the SCI model group compared with the sham group. The P2Y2R inhibitor relieved neuronal inflammation after SCI. Compared with the sham group, the apoptotic rate of spinal cord tissue cells in the model group was significantly increased. The P2Y2R inhibitor reduced the apoptosis of the spinal cord tissue. The expressions of CD34, Tuj1, and nestin in the model group were decreased, while the expressions of GFAP and P2Y2R were increased. The P2Y2R inhibitor reversed their expression levels. The P2Y2R inhibitor could alleviate SCI by relieving the neuronal inflammation, inhibiting the spinal cord tissue apoptosis, and promoting neuronal differentiation and vascular proliferation after SCI. P2Y2R may serve as a target for the treatment of SCI.


Assuntos
Regeneração Nervosa , Neurônios , Receptores Purinérgicos P2Y2 , Traumatismos da Medula Espinal , Medula Espinal , Animais , Modelos Animais de Doenças , Neovascularização Patológica , Regeneração Nervosa/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y2/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/irrigação sanguínea , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...