Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(1): 110-118, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109786

RESUMO

Epigenetic modulators play an increasingly crucial role in the treatment of various diseases. In this case, it is imperative to systematically investigate the activity of these agents and understand their influence on the entire epigenetic regulatory network rather than solely concentrate on individual targets. This work introduces MT-EpiPred, a multitask learning method capable of predicting the activity of compounds against 78 epigenetic targets. MT-EpiPred demonstrated outstanding performance, boasting an average auROC of 0.915 and the ability to handle few-shot targets. In comparison to the existing method, MT-EpiPred not only expands the target pool but also achieves superior predictive performance with the same data set. MT-EpiPred was then applied to predict the epigenetic target of a newly synthesized compound (1), where the molecular target was unknown. The method identified KDM4D as a potential target, which was subsequently validated through an in vitro enzyme inhibition assay, revealing an IC50 of 4.8 µM. The MT-EpiPred method has been implemented in the web server MT-EpiPred (http://epipred.com), providing free accessibility. In summary, this work presents a convenient and accurate tool for discovering novel small-molecule epigenetic modulators, particularly in the development of selective inhibitors and evaluating the impact of these inhibitors over a broad epigenetic network.


Assuntos
Epigênese Genética , Aprendizagem
2.
Chem Biodivers ; 20(9): e202300953, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486326

RESUMO

Two undescribed eudesmane-type sesquiterpenoids together with four known compounds were isolated from Clonostachys sp. Y6-1 associated. Their chemical structures were unambiguously determined by NMR, mass spectrometry, and 13 C-NMR calculation as well as DP4+ probability analyses. The absolute configurations of compounds 1 and 2 were determined by ECD calculation and X-ray single-crystal diffraction methods. Furthermore, all isolates were evaluated for in vitro cytotoxic activities against MCF-7, HCT-116, MDA-MB-231, and SW620 cancer cells. Among them, bioactivity evaluation of compound 5 revealed that weak activity (IC50 =66.55±0.82 µM) against SW620.


Assuntos
Antineoplásicos , Sesquiterpenos de Eudesmano , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Antineoplásicos/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
3.
Phytochemistry ; 210: 113665, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044361

RESUMO

Fourteen undescribed seco-type diterpenoids, named nudifloids A-N, together with ten known analogs, were isolated from the leaves of Callicarpa nudiflora. Nudifloids A-N had a characteristic 3,4-seco-labdane-type diterpenoid skeleton, whereas nudifloids A-C and K-N were 3,4-seco-norditerpenoids. Nudifloid A was the first example of a 3,4-seco-12,13,14,15,16-quartnor-labdane diterpenoid, with a seven-membered lactone ring formed through esterification between C-3 and C-11. Nudifloids B and C were a pair of highly modified 3,4-seco-labdane nor-diterpenoid epimers, of which C-2 and C-18 were cyclized together to form a cyclohexene fragment. The structures of these undescribed diterpenoids were established by spectroscopic analysis and reference data. The anti-inflammatory activity of diterpenoids in rich yield was evaluated by analyzing the inhibition of lipopolysaccharide plus nigericin-induced pyroptosis in J774A.1 cells. Nudifloids D and E exhibited prominent anti-NLRP3 inflammasome activity, with IC50 values of 1.80 and 1.59 µM, respectively. Cell permeability assays revealed that nudifloid D inhibited pyroptosis, which could ameliorate inflammation by blocking the activation of the NLRP3 inflammasome.


Assuntos
Callicarpa , Diterpenos , Medicamentos de Ervas Chinesas , Callicarpa/química , Inflamassomos , Estrutura Molecular , Medicamentos de Ervas Chinesas/química , Diterpenos/farmacologia , Diterpenos/química
4.
Bioorg Med Chem ; 84: 117262, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37018878

RESUMO

Autophagy related 4B (ATG4B) which regulates autophagy by promoting the formation of autophagosome through reversible modification of LC3, is closely related to cancer cell growth and drug resistance, and therefore is an attractive therapeutic target. Recently, ATG4B inhibitors have been reported, yet with drawbacks including weak potency. To discover more promising ATG4B inhibitors, we developed a high-throughput screening (HTS) assay and identified a new ATG4B inhibitor named DC-ATG4in. DC-ATG4in directly binds to ATG4B and inhibits its enzyme activity with an IC50 of 3.08 ± 0.47 µM. We further confirmed that DC-ATG4in is an autophagy inhibitor and blocks autophagy induced by Sorafenib in Hepatocellular Carcinoma (HCC) cells. More importantly, combination of DC-ATG4in with Sorafenib synergized the cancer cell killing effect and proliferation inhibition activities on HCC cells. Our data suggested that inactivation of autophagy via ATG4B inhibition may be a viable strategy to sensitize existing targeted therapy such as Sorafenib in the future.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Sorafenibe , Humanos , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Cisteína Endopeptidases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
5.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36960771

RESUMO

MOTIVATION: Histones are the chief protein components of chromatin, and the chemical modifications on histones crucially influence the transcriptional state of related genes. Histone modifying enzyme (HME), responsible for adding or removing the chemical labels, has emerged as a very important class of drug target, with a few HME inhibitors launched as anti-cancerous drugs and tens of molecules under clinical trials. To accelerate the drug discovery process of HME inhibitors, machine learning-based predictive models have been developed to enrich the active molecules from vast chemical space. However, the number of compounds with known activity distributed largely unbalanced among different HMEs, particularly with many targets of less than a hundred active samples. In this case, it is difficult to build effective virtual screening models directly based on machine learning. RESULTS: To this end, we propose a new Meta-learning-based Histone Modifying Enzymes Inhibitor prediction method (MetaHMEI). Our proposed MetaHMEI first uses a self-supervised pre-training approach to obtain high-quality molecular substructure embeddings from a large unlabeled chemical dataset. Then, MetaHMEI exploits a Transformer-based encoder and meta-learning framework to build a prediction model. MetaHMEI allows the effective transfer of the prior knowledge learned from HMEs with sufficient samples to HMEs with a small number of samples, so the proposed model can produce accurate predictions for HMEs with limited data. Extensive experimental results on our collected and curated HMEs datasets show that MetaHMEI is better than other methods in the case of few-shot learning. Furthermore, we applied MetaHMEI in the virtual screening process of histone JMJD3 inhibitors and successfully obtained three small molecule inhibitors, further supporting the validity of our model.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia
6.
J Nat Prod ; 85(2): 317-326, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35029993

RESUMO

A spiro ent-clerodane homodimer with a rare 6/6/6/6/6-fused pentacyclic scaffold, spiroarborin (1), together with four new monomeric analogues (2-5), were isolated from Callicarpa arborea. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum-chemical calculations, and X-ray diffraction. A plausible biosynthetic pathway of 1 was proposed, and a biomimetic synthesis of its derivative was accomplished. Compound 1 showed a potent inhibitory effect by directly binding to the YEATS domain of the 11-19 leukemia (ENL) protein with an IC50 value of 7.3 µM. This gave a KD value of 5.0 µM, as recorded by a surface plasmon resonance binding assay.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Leucemia , Callicarpa/química , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/farmacologia , Histonas/metabolismo , Estrutura Molecular , Domínios Proteicos
7.
Bioorg Chem ; 109: 104728, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636436

RESUMO

As a successful anti-tumor drug target, the family of histone deacetylases (HDACs) is also a critical player in immune response, making the research of anti-inflammatory HDAC inhibitors an attractive new focus. In this report, triterpenoids nigranoic acid (NA) and manwuweizic acid (MA) were identified as HDAC inhibitors through docking-based virtual screening and enzymatic activity assay. A series of derivatives of NA and MA were synthesized and assessed for their biological effects. As a result, hydroxamic acid derivatives of NA and MA showed moderately increased activity for HDAC1/2/4/6 inhibition (the lowest IC50 against HDAC1 is 1.14 µM), with no activity against HDAC8. In J774A.1 macrophage, compound 1-3, 13 and 17-19 demonstrated inhibitory activity against lactate dehydrogenase (LDH) and IL-1ß production, without affecting cell viability. Compound 19 increased the histone acetylation level in J774A.1 cells, as well as inhibited IL-1ß maturation and caspase-1 cleavage. These results indicated that compound 19 blocks the activation of NLRP3 inflammasome, probably related to HDAC inhibition. This work provided a natural scaffold for developing low-cytotoxic and anti-inflammatory HDAC inhibitors, as well as a class of tool molecules for studying the relationship between HDACs and NLRP3 activation.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
8.
Bioorg Chem ; 102: 104041, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683184

RESUMO

In order to discover and develop the new HIV-1 NNRTIs, a series of 5-alkyl-6-(benzo[d][1,3]dioxol-5-ylalkyl)-2-mercaptopyrimidin-4(3H)-ones was synthesized and screened for their in vitro cytotoxicity against HIV-1. Most of the compounds we synthetized showed high activity against wild-type HIV-1 strain (IIIB) while IC50 values are in the range of 0.06-12.95 µM. Among them, the most active HIV-1 inhibitor was compound 6-(benzo[d][1,3]dioxol-5-ylmethyl)-5-ethyl-2-((2-(4-hydroxyphenyl)-2-oxoethyl)thio)pyrimidin-4(3H)-one (5b), which exhibited similar HIV-1 inhibitory potency (IC50 = 0.06 µM, CC50 = 96.23 µM) compared with nevirapine (IC50 = 0.04 µM, CC50 >200 µM) and most of compounds exhibited submicromolar IC50 values indicating they were specific RT inhibitors. The compounds 5b, 6-(benzo[d] [1,3]dioxol-5-yl)-5-ethyl-2-((2-(4-hydroxyphenyl)-2-oxoethyl)thio)pyrimidin-4(3H)-one (5c) and 4-(2-((4-(benzo[d][1,3]dioxol-5-ylmethyl)-5-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio)acetyl)phenylbenzo[d][1,3]dioxole-5-carboxylate (5r) were selected for further study. It was found that all of them had little toxicity to peripheral blood mononuclear cell (PBMC), and had a good inhibitory effect on the replication of HIV-1 protease inhibitor resistant strains, fusion inhibitor resistant strains and nucleosides reverse transcriptase inhibitor resistant strains, as well as on clinical isolates. Besides, compound 5b and 5c showed inhibition of HIV-1 RT RNA-dependent DNA polymerization activity and DNA-dependent DNA polymerization activity, while compound 5r only showed inhibition of HIV DNA-dependent DNA polymerization activity, which was different from classical reverse transcriptase inhibitors. Our study which offered the preliminary structure-activity relationships and modeling studies of these new compounds has provided the valuable avenues for future molecular optimization.


Assuntos
Fármacos Anti-HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Pirimidinonas/química , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade
9.
Fitoterapia ; 137: 104200, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31195082

RESUMO

Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) is a dual-functional therapeutic target. The agonists and inhibitors of RORγt are potential agents for tumor immunotherapy and autoimmune diseases, respectively, and sometimes share similar scaffolds. Although the widely distributed triterpenoid ursolic acid (UA) has been identified as a RORγt inhibitor, the report of a triterpenoid RORγt agonist is still absent. By screening an in-house triterpenoid library, we uncovered a novel RORγt agonist, betulinaldehyde (1), together with an inhibitor (2, 3ß, 28-Dihydroxy-lupan-29-oic acid). Compound 1 showed a good RORγt activating effect with the EC50 of 11.4 µM in Alpha Screen assay, and altered the thermal stability of RORγt by directly binding to the protein in vitro. Combined with the SPR assay, the Kd value of compound 1 was examined as 2.99 µM. The modulation mechanism of triterpenoid agonists and inhibitors were discussed by molecular docking. Herein, we firstly discovered compound 1 as a triterpenoid agonist of RORγt. The co-distribution of triterpenoid RORγt agonist and inhibitors in the same plant, might be related to the anti-inflammatory and anti-cancerous bioactivity of the plant extract.


Assuntos
Aldeídos/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Triterpenos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...