Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 276: 118957, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524421

RESUMO

The main pathological feature of atherosclerosis is lipid metabolism disorder and inflammation. Macrophages, as the most important immune cells in the body, run through the beginning and end of disease development. After macrophages overtake the atherosclerosis-susceptible area apolipoprotein low-density lipoprotein ox-LDL, they transform into foam cells that adhere to blood vessels and recruit a large number of pro-inflammatory factors to initiate the disease. Promoting the outflow of lipids in foam cells and alleviating inflammation have become the basic ideas for the study of atherosclerosis treatment strategies. The polarization of macrophages refers to the estimation of the activation of macrophages at a specific point in space and time. Determining the proportion of different macrophage phenotypes in the plaque can help identify delay or prevent disease development. However, the abnormal polarization of macrophages and the accumulation of lipid also affect the growth state of cells to some extent, thus aggravate the influence on plaque area and stability. Besides, overactive or deficient autophagy of macrophages may also lead to cell death and participate in lipid metabolism and inflammation regression. In this paper, the role of macrophages in atherosclerosis was discussed from three aspects: polarization, death, and autophagy.


Assuntos
Aterosclerose/patologia , Autofagia , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/patologia , Animais , Aterosclerose/imunologia , Humanos , Inflamação/imunologia , Macrófagos/imunologia
2.
Pharmacol Res ; 166: 105481, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549726

RESUMO

Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ginsenosídeos/uso terapêutico , Animais , Cardiotônicos/efeitos adversos , Cardiotônicos/química , Cardiotônicos/farmacologia , Doenças Cardiovasculares/patologia , Ginsenosídeos/efeitos adversos , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Panax/química , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...