Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443830

RESUMO

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Vitaceae , Humanos , Filogenia , Regiões Antárticas
2.
Mitochondrial DNA B Resour ; 9(2): 272-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352189

RESUMO

Nekemias is a perennial woody vine with nine species that had been originally placed in Ampelopsis. These species of Nekemias are economically and medically important. Limited information is available on the genomic characteristics of the chloroplasts of this genus. Nekemias hypoglauca (Hance) J. Wen & Z. L. Nie 2014 contains 131 unique genes (86 protein-coding genes, 8 rRNAs, and 37 tRNAs). The complete chloroplast sequence contains 162,976 bp. The large single-copy region contains 89,291 bp; the small single-copy region contains 19,063 bp, and a pair of inverted repeat sequences is composed of 27,311 bp. There are 84 simple sequence repeat (SSR) loci in the complete chloroplast genome of N. hypoglauca, with mononucleotide, dinucleotide, trinucleotide, tetranucleotide and hexanucleotide SSRs of 58, 9, 6, 10 and 1, respectively. A total of 337 repeats were identified, including 172 forward repeats, three reverse repeats and 163 palindromic repeats. A phylogenetic analysis based on the complete genome data of the chloroplasts of 10 plant species indicated the monophyly of Nekemias and determined the phylogenetic relationships of N. hypoglauca in Nekemias. This study provides a reference for further studies on the taxonomy, identification, origin and evolution of N. hypoglauca and Nekemias.

3.
Gene ; 901: 148177, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242378

RESUMO

Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.


Assuntos
Asteraceae , Genoma de Cloroplastos , Asteraceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Cloroplastos
4.
Mol Phylogenet Evol ; 190: 107962, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926394

RESUMO

Polygonatum is the largest genus of tribe Polygonateae (Asparagaceae) and is widely distributed in the temperate Northern Hemisphere, especially well diversified in southwestern China to northeastern Asia. Phylogenetic relationships of many species are still controversial. Hence it is necessary to clarify their phylogenetic relationships and infer possible reticulate relationships for the genus. In this study, genome-wide data of 43 species from Polygonatum and its closely related taxa were obtained by Hyb-Seq sequencing. The phylogenetic trees constructed from genome-wide nuclear and chloroplast sequences strongly supported the monophyly of Polygonatum with division into three major clades. A high level of incongruence was detected between nuclear and chloroplast trees as well as among gene trees within the genus, but all occurred within each major clade. However, introgression tests and reticulate evolution analyses revealed low level of gene flow and weak introgression events in the genus, suggesting hybridization and introgression were not dominant during the evolutionary diversification of Polygonatum in the Northern Hemisphere. This study provides important insights into reconstructing evolutionary relationships and speciation pattern of taxa from the north temperate flora.


Assuntos
Asparagaceae , Polygonatum , Filogenia , China
5.
Front Plant Sci ; 14: 1234148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915504

RESUMO

East Asia is the richest region of plant biodiversity in the northern temperate zone, and its radiation provides key insights for understanding rapid speciation, including evolutionary patterns and processes. However, it is challenging to investigate the recent evolutionary radiation among plants because of the lack of genetic divergence, phenotypic convergence, and interspecific gene flow. Epimedium sect. Diphyllon is a rarely studied plant lineage endemic to East Asia, especially highly diversified in its southern part. In this study, we report a robust phylogenomic analysis based on genotyping-by-sequencing data of this lineage. The results revealed a clear biogeographic pattern for Epimedium sect. Diphyllon with recognition into two major clades corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms of East Asian Flora and rapid diversification of the extant species dated to the Pleistocene. Evolutionary radiation of Epimedium sect. Diphyllon is characterized by recent and predominant parallel evolution and atavism between the two subkingdom regions, with extensive reticulating hybridization within each region during the course of diversification in southern East Asia. A parallel-atavism-introgression hypothesis is referred to in explaining the radiation of plant diversity in southern East Asia, which represents a potential model for the rapid diversification of plants under global climate cooling in the late Tertiary. Our study advances our understanding of the evolutionary processes of plant radiation in East Asia as well as in other biodiversity hotspot regions.

6.
Mitochondrial DNA B Resour ; 8(9): 1003-1006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746035

RESUMO

The plastid genome of Lysidice brevicalyx was successfully assembled using Illumina sequencing reads for the first time. The complete plastid genome of L. brevicalyx is a circular structure of 159,084 bp with a GC content of 36.4%. It comprises a large single-copy (LSC) region of 87,783 bp, a small single-copy (SSC) region of 19,557 bp, and two inverted repeat regions (IRA and IRB) of 25,872 bp, each. The plastome of L. brevicalyx contains a total of 128 genes, including 83 protein-coding genes, 37 tRNAs, and 8 rRNAs. The phylogenetic analysis strongly supports the monophyly of Lysidice. This study provides the first complete plastid genome sequence of L. brevicalyx and contributes to our understanding of the molecular characteristics and evolutionary relationships of this plant species.

7.
Mol Phylogenet Evol ; 186: 107866, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354923

RESUMO

A set of newly designed Vitaceae baits targeting 1013 genes was employed to explore phylogenetic relationships among North American Vitis. Eurasian Vitis taxa including Vitis vinifera were found to be nested within North American Vitis subgenus Vitis. North American Vitis subgenus Vitis can be placed into nine main groups: the Monticola group, the Occidentales group, the Californica group, the Vinifera group (introduced from Eurasia), the Mustangensis group, the Palmata group, the Aestivalis group, the Labrusca group, and the Cinerea group. Strong cytonuclear discordances were detected in North American Vitis, with many species non-monophyletic in the plastid phylogeny, while monophyletic in the nuclear phylogeny. The phylogenomic analyses support recognizing four distinct species in the Vitis cinerea complex in North America: V. cinerea, V. baileyana, V. berlandieri, and V. simpsonii. Such treatment will better serve the conservation of wild Vitis diversity in North America. Yet the evolutionary history of Vitis is highly complex, with the concordance analyses indicating conflicting signals across the phylogeny. Cytonuclear discordances and Analyses using the Species Networks applying Quartets (SNaQ) method support extensive hybridizations in North American Vitis. The results further indicate that plastid genomes alone are insufficient for resolving the evolutionary history of plant groups that have undergone rampant hybridization, like the case in North American Vitis. Nuclear gene data are essential for species delimitation, identification and reconstructing evolutionary relationships; therefore, they are imperative for plant phylogenomic studies.


Assuntos
Vitaceae , Vitis , Filogenia , Vitis/genética , Vitaceae/genética , Evolução Biológica , América do Norte
8.
Mol Phylogenet Evol ; 181: 107727, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754338

RESUMO

Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.


Assuntos
Aralia , Araliaceae , Filogenia , Ásia Oriental , Hibridização Genética , Plantas
9.
J Integr Plant Biol ; 65(5): 1183-1203, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36772845

RESUMO

The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.


Assuntos
Vitis , Filogenia , Vitis/genética , América do Norte , Núcleo Celular , Hibridização Genética
10.
Mol Phylogenet Evol ; 177: 107628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096462

RESUMO

The global herbaceous flora is probably shaped by both ancient and/or recent diversification, companied with the impacts from geographic differences between the Northern and Southern Hemispheres. Therefore, its biogeographic pattern with respect to temporal and spatial divergence is far from full understanding. Tribe Rubieae, the largest herbaceous tribe in the woody-dominant Rubiaceae, provides an excellent opportunity for studying the macroevolution of worldwide colonization. Here, we aim to reconstruct the evolutionary history of Rubieae with regard to climate fluctuation and geological history in the Cenozoic. A total of 204 samples of Rubieae representing all the distribution areas of the tribe were used to infer its phylogenetic and biogeographic histories based on two nrDNA and six cpDNA regions. The ancestral area of Rubieae was reconstructed using a time-calibrated phylogeny in RASP and diversification rates were inferred using Bayesian analysis of macroevolutionary mixtures (BAMM). Our results show Rubieae probably originated in European region during the middle Oligocene, with the two subtribes separating at 26.8 million years ago (Ma). All the genera in Rubieae formed separate clades between 24.79 and 6.23 Ma. The ancestral area of the subtribe Rubiinae was the Madrean-Tethyan plant belt and the North Atlantic land bridge (NALB) provided passage between North America and Europe for Rubiinae. The subtribe Galiinae clade originated in Europe/central Asia during the late Oligocene. Two diversification shifts were detected within Rubieae in the late Neogene. Most extant Rubieae species diverged recently during the Neogene within clades that generally were established during the late Paleogene. The tribe shows complex migration/dispersal patterns within the North Hemisphere combined with multiple recent dispersals into Southern Hemisphere. Our results highlighted the important role of recent biogeographic diversification in the Northern Hemisphere in shaping the modern global herbaceous flora during the latest and rapid worldwide expansion in the Neogene.


Assuntos
Rubiaceae , Teorema de Bayes , Filogenia , Filogeografia , Plantas , Rubiaceae/genética
11.
Ann Bot ; 130(1): 41-52, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35460565

RESUMO

BACKGROUND AND AIMS: Ongoing global warming is a challenge for humankind. A series of drastic climatic changes have been proven to have occurred throughout the Cenozoic based on a variety of geological evidence, which helps to better understand our planet's future climate. Notably, extant biomes have recorded drastic environmental shifts. The climate in southern Asia, which hosts high biodiversity, is deeply impacted by the Asian monsoon. The origins and evolutionary dynamics of biomes occurring between the tropics and sub-tropics in southern Asia have probably been deeply impacted by climatic changes; however, these aspects remain poorly studied. We tested whether the evolutionary dynamics of the above biomes have recorded the drastic, late Cenozoic environmental shifts, by focusing on Magnolia section Michelia of the family Magnoliaceae. METHODS: We established a fine time-calibrated phylogeny of M. section Michelia based on complete plastid genomes and inferred its ancestral ranges. Finally, we estimated the evolutionary dynamics of this section through time, determining its diversification rate and the dispersal events that occurred between tropical and sub-tropical areas. KEY RESULTS: The tropical origin of M. section Michelia was dated to the late Oligocene; however, the diversification of its core group (i.e. M. section Michelia subsection Michelia) has occurred mainly from the late Miocene onward. Two key evolutionary shifts (dated approx. 8 and approx. 3 million years ago, respectively) were identified, each of them probably in response to drastic climatic changes. CONCLUSION: Here, we inferred the underlying evolutionary dynamics of biomes in southern Asia, which probably reflect late Cenozoic climatic changes. The occurrence of modern Asian monsoons was probably fundamental for the origin of M. section Michelia; moreover, the occurrence of asymmetric dispersal events between the tropics and sub-tropics hint at an adaptation strategy of M. section Michelia to global cooling, in agreement with the tropical conservatism hypothesis.


Assuntos
Magnolia , Magnoliaceae , Biodiversidade , Mudança Climática , Filogenia
12.
Front Genet ; 12: 709996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917123

RESUMO

Chimonanthus of Calycanthaceae is a small endemic genus in China, with unusual winter-blooming sweet flowers widely cultivated for ornamentals and medicinal uses. The evolution of Chimonanthus plastomes and its phylogenetic relationships remain unresolved due to limited availability of genetic resources. Here, we report fully assembled and annotated chloroplast genomes of five Chimonanthus species. The chloroplast genomes of the genus (size range 153,010 - 153,299 bp) reveal high similarities in gene content, gene order, GC content, codon usage, amino acid frequency, simple sequence repeats, oligonucleotide repeats, synonymous and non-synonymous substitutions, and transition and transversion substitutions. Signatures of positive selection are detected in atpF and rpoB genes in C. campanulatus. The correlations among substitutions, InDels, and oligonucleotide repeats reveal weak to strong correlations in distantly related species at the intergeneric levels, and very weak to weak correlations among closely related Chimonanthus species. Chloroplast genomes are used to reconstruct a well-resolved phylogenetic tree, which supports the monophyly of Chimonanthus. Within Chimonanthus, C. praecox and C. campanulatus form one clade, while C. grammatus, C. salicifolius, C. zhejiangensis, and C. nitens constitute another clade. Chimonanthus nitens appears paraphyletic and is closely related to C. salicifolius and C. zhejiangensis, suggesting the need to reevaluate the species delimitation of C. nitens. Chimonanthus and Calycanthus diverged in mid-Oligocene; the radiation of extant Chimonanthus species was dated to the mid-Miocene, while C. grammatus diverged from other Chimonanthus species in the late Miocene. C. salicifolius, C. nitens (a), and C. zhejiangensis are inferred to have diverged in the Pleistocene of the Quaternary period, suggesting recent speciation of a relict lineage in the subtropical forest regions in eastern China. This study provides important insights into the chloroplast genome features and evolutionary history of Chimonanthus and family Calycanthaceae.

13.
PeerJ ; 9: e12174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616623

RESUMO

The CYP75 gene family plays an important role in flavonoid biosynthesis in plants. Little is known about the evolution of the gene family within the grape family. Here, we extracted the CYP75 genes from transcriptome data of 15 grape species and 36 representative genomes from other plants to explore the evolutionary history of the CYP75 gene family in Vitaceae. The structure of the CYP75 protein sequences is highly conserved with the variation mainly occurring in the N terminal and the middle region. The evolutionary analyses suggested classifying the CYP75 gene family into three groups in Vitaceae, namely Vitaceae A1, Vitaceae A2 and Vitaceae B. The Vitaceae A1 and A2 belong to the CYP75A subfamily and the Vitaceae B belongs to the CYP75B subfamily. Within the Vitaceae A1, most Vitaceae taxa present only one copy of the CYP75A protein sequence except for Vitis vinifera with a high number of sequences, which might have originated through recent gene duplications after its split from the other species. Vitaceae A2 contain only CYP75A sequences from Vitaceae sister to one from Camellia sinensis, probably representing a relict lineage. The CYP75B proteins were found to be dominated in Vitaceae and other angiosperms. Our results provide important insights into understanding the evolutionary history of the CYP75 gene family in Vitaceae and other angiosperms.

14.
Mol Phylogenet Evol ; 163: 107235, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146677

RESUMO

The inverted repeat-lacking clade (IRLC) is one of the most derived clades within the subfamily Papilionoideae of the legume family, and includes various economically important plants, e.g., chickpeas, peas, liquorice, and the largest genus of angiosperms, Astragalus. Tribe Wisterieae is one of the earliest diverged groups of the IRLC, and its generic delimitation and spatiotemporal diversification needs further clarifications. Based on genome skimming data, we herein reconstruct the phylogenomic framework of the IRLC, and infer the inter-generic relationships and historical biogeography of Wisterieae. We redefine tribe Caraganeae to contain Caragana only, and tribe Astragaleae is reduced to the Erophaca-Astragalean clade. The chloroplast capture scenario was hypothesized as the most plausible explanation of the topological incongruences between the chloroplast CDSs and nuclear ribosomal DNA trees in both the Glycyrrhizinae-Adinobotrys-Wisterieae clade and the Chesneyeae-Caraganeae-Hedysareae clade. A new name, Caragana lidou L. Duan & Z.Y. Chang, is proposed within Caraganeae. Thirteen genera are herein supported within Wisterieae, including a new genus, Villosocallerya L. Duan, J. Compton & Schrire, segregated from Callerya. Our biogeographic analyses suggest that Wisterieae originated in the late Eocene and its most recent common ancestor (MRCA) was distributed in continental southeastern Asia. Lineages of Wisterieae remained in the ancestral area from the early Oligocene to the early Miocene. By the middle Miocene, Whitfordiodendron and the MRCA of Callerya-Kanburia-Villosocallerya Clade became disjunct between the Sunda area and continental southeastern Asia, respectively; the MRCA of Wisteria migrated to North America via the Bering land bridge. The ancestor of Austrocallerya and Padbruggea migrated to the Wallacea-Oceania area, which split in the early Pliocene. In the Pleistocene, Wisteria brachybotrys, W. floribunda and Wisteriopsis japonica reached Japan, and Callerya cinerea dispersed to South Asia. This study provides a solid phylogenomic for further evolutionary/biogeographic/systematic investigations on the ecologically diverse and economically important IRLC legumes.


Assuntos
Fabaceae , Evolução Biológica , Fabaceae/genética , Genoma , Filogenia , Filogeografia
15.
Mol Phylogenet Evol ; 162: 107202, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33992786

RESUMO

The tribe Senecioneae is one of the largest tribes in Asteraceae, with a nearly cosmopolitan distribution. Despite great efforts devoted to elucidate the evolution of Senecioneae, many questions still remain concerning the systematics of this group, from the tribal circumscription and position to species relationships in many genera. The hybridization-based target enrichment method of next-generation sequencing has been accepted as a promising approach to resolve phylogenetic problems. We herein develop a set of single-/low-copy genes for Senecioneae, and test their phylogenetic utilities. Our results demonstrate that these genes work highly efficiently for Senecioneae, with a high average gene recovery of 98.8% across the tribe and recovering robust phylogenetic hypotheses at different levels. In particular, the delimitation of the Senecioneae has been confirmed to include Abrotanella and exclude Doronicum, with the former sister to core Senecioneae and the latter shown to be more closely related to Calenduleae. Moreover, Doronicum and Calenduleae are inferred to be the closest relatives of Senecioneae, which is a new hypothesis well supported by statistical topology tests, morphological evidence, and the profile of pyrrolizidine alkaloids, a special kind of chemical characters generally used to define Senecioneae. Furthermore, this study suggests a complex reticulation history in the diversification of Senecioneae, accounting for the prevalence of polyploid groups in the tribe. With subtribe Tussilagininae s.str. as a case study showing a more evident pattern of gene duplication, we further explored reconstructing the phylogeny in the groups with high ploidy levels. Our results also demonstrate that tree topologies based on sorted paralogous copies are stable across different methods of phylogenetic inference, and more congruent with the morphological evidence and the results of previous phylogenetic studies.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Núcleo Celular/genética , Filogenia , Hibridização Genética , Poliploidia
16.
Plant Divers ; 43(2): 93-101, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997541

RESUMO

Maianthemum is a genus with more than 35 species from the tribe Polygonateae (Asparagaceae), widely distributed between North to Central Americas and eastern Asia with high diversity in the eastern Himalayas to the Hengduan Mountains of SW China. Although most species from SW China form a well-supported clade, phylogenetic relationships within this clade remain unclear. With a broad level of taxon sampling and an extensive character sampling from eight DNA regions, this study intends to revisit the phylogeny and biogeography of the genus to better understand the divergence patterns of species from SW China. Phylogenetic results suggested the monophyly of Maianthemum with recognition of nine strongly supported clades, but backbone relationships among these clades remained largely uncertain. For the SW China clade, individuals from the same species are grouped into different lineages. Our results revealed that the fast radiation of the SW China clade was occurred in the eastern Himalayas, followed by subsequent radiation in the Hengduan Mountains in the Pliocene. Intercontinental disjunctions of Maianthemum in the Northern Hemisphere appear to have occurred multiple times during the late Miocene to the Pliocene, likely resulted by a combination of both vicariance and long-distance dispersal events.

17.
Mol Phylogenet Evol ; 154: 106948, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866616

RESUMO

The grape family consists of 16 genera and ca. 950 species. It is best known for the economically important fruit crop - the grape Vitis vinifera. The deep phylogenetic relationships and character evolution of the grape family have attracted the attention of researchers in recent years. We herein reconstruct the phylogenomic relationships within Vitaceae using nuclear and plastid genes based on the Hyb-Seq approach and test the newly proposed classification system of the family. The five tribes of the grape family, including Ampelopsideae, Cayratieae, Cisseae, Parthenocisseae, and Viteae, are each robustly supported by both nuclear and chloroplast genomic data and the backbone relationships are congruent with previous reports. The cupular floral disc (raised above and free from ovary at the upper part) is an ancestral state of Vitaceae, with the inconspicuous floral disc as derived in the tribe Parthenocisseae, and the state of adnate to the ovary as derived in the tribe Viteae. The 5-merous floral pattern was inferred to be the ancestral in Vitaceae, with the 4-merous flowers evolved at least two times in the family. The compound dichasial cyme (cymose with two secondary axes) is ancestral in Vitaceae and the thyrse inflorescence (a combination of racemose and cymose branching) in tribe Viteae is derived. The ribbon-like trichome only evolved once in Vitaceae, as a synapomorphy for the tribe Viteae.


Assuntos
Filogenia , Vitaceae/classificação , Vitaceae/genética , Núcleo Celular/genética , Genoma de Cloroplastos , Funções Verossimilhança , Plastídeos/genética
18.
Data Brief ; 31: 105738, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529008

RESUMO

Aspidistra is a large genus of herbaceous plants with more than 130 species growing in tropical forests of SE Asia and specially diversified in southern China and northern Vietnam. The genus is characterized by its evergreen understorey habitats with flowers set at ground level and more or less hidden in litter material. Aspidistra fenghuangensis is a species currently only known from central China. In recent years, number of species in this genus has been greatly increased. However, the high throughput sequencing data have never been reported in this genus. Here, we sequenced the transcriptome of A. fenghuangensis obtained from young leaves using the Illumina HiSeq2000 with 9.15Gb of clean data. Because of the absence of a reference-grade genome in the genus, a de novo assembly of the transcriptome data with full annotation have been carried out. This data is accessible via NCBI BioProject (PRJNA608213).

19.
Front Plant Sci ; 11: 584981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519845

RESUMO

The subfamily Nolinoideae of Asparagaceae is an extremely morphologically heterogeneous group, which is comprised of seven lineages, formerly known as Eriospermaceae, Polygonateae, Ophiopogoneae, Convallarieae, Ruscaceae s.s., Dracaenaceae, and Nolinaceae from different families or even orders. Their drastically divergent morphologies and low level of molecular resolution have hindered our understanding on their evolutionary history. To resolve reliable and clear phylogenetic relationships of the Nolinoideae, a phylogenetic study was conducted based on transcriptomic sequencing of 15 species representing all the seven lineages. A dataset containing up to 2,850,331 sites across 2,126 genes was analyzed using both concatenated and coalescent methods. Except for Eriospermum as outgroup, the transcriptomic data strongly resolved the remaining six lineages into two groups, one is a paraphyletic grade including the woody lineages of dracaenoids, ruscoids, and nolinoids and a monophyletic herbaceous clade. Within the herbaceous group, the Ophiopogoneae + Theropogon is sister to a clade that is composed of Convallarieae and the monophyletic Polygonateae. Our work provides a first robust deep relationship of the highly heterogeneous Nolinoideae and paves the way for further investigations of its complex evolution.

20.
Mol Phylogenet Evol ; 139: 106561, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310817

RESUMO

The Northern Hemisphere was widely covered by a tropical flora (i.e., the Boretropical flora) in the Eocene and the evaluation of plant diversifications in the post-Boreotropical era has become an important challenge to understanding the modern biogeographic complexity in this vast region. Toxicodendron or the poison ivy genus of the sumac family has a temperate to tropical distribution in Asia and North America and can serve as an excellent model for investigating the evolution of the post-Boreotropical biogeographic complexity. Molecular age estimates were calculated using a Bayesian approach with sampling covering the taxonomic diversity and biogeographic distributions within the genus, and sequence data from three nuclear DNA (ITS, ETS, NIA-i3) and two chloroplast (ndhF, trnL-F) regions, combined with calibrations from three fossil records. Ancestral areas were reconstructed using RASP and BioGeoBears. Toxicodendron is estimated to have a Boreotropical origin in the New World in the late Eocene at 37.68 Ma. It then diversified into a subtropical-temperate and a tropical lineage, followed by migrating into eastern Asia via the North Atlantic land bridges in the Oligocene to early Miocene. Two tropical migration events during the Miocene are identified between continental Asia and SE Asia or New Guinea around 20.91 Ma and 14.33 Ma, respectively. Results from this study highlight the importance of the North Atlantic land bridges and eastern Asia in the post-Boreotopical plant divergences in the Northern Hemisphere, especially when biogeographic exchanges between North and South America were limited.


Assuntos
Toxicodendron/classificação , Teorema de Bayes , Cloroplastos/genética , Ásia Oriental , Fósseis , América do Norte , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA