Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8066, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277581

RESUMO

High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.


Assuntos
Replicação do DNA , DNA Mitocondrial , Miócitos Cardíacos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Feminino , Masculino , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Ferroptose/genética , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Humanos , Coração/fisiopatologia , Fibrose
2.
Oncoimmunology ; 13(1): 2369373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915784

RESUMO

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of ß2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of ß2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for ß2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.


Assuntos
Antígenos CD18 , Células Dendríticas , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Camundongos Endogâmicos C57BL , Adesão Celular , Receptores CCR7/metabolismo , Receptores CCR7/genética , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Humanos , Reprogramação Metabólica
3.
Sci Rep ; 14(1): 13513, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866914

RESUMO

Fecal calprotectin is an established marker of gut inflammation in inflammatory bowel disease (IBD). Elevated levels of fecal calprotectin as well as gut microbial dysbiosis have also been observed in other clinical conditions. However, systemic and multi-omics alterations linked to elevated fecal calprotectin in older individuals remain unclear. This study comprehensively investigated the relationship between fecal calprotectin levels, gut microbiome composition, serum inflammation and targeted metabolomics markers, and relevant lifestyle and medical data in a large sample of older individuals (n = 735; mean age ± SD: 68.7 ± 6.3) from the TREND cohort study. Low (0-50 µg/g; n = 602), moderate (> 50-100 µg/g; n = 64) and high (> 100 µg/g; n = 62) fecal calprotectin groups were stratified. Several pro-inflammatory gut microbial genera were significantly increased and short-chain fatty acid producing genera were decreased in high vs. low calprotectin groups. In serum, IL-17C, CCL19 and the toxic metabolite indoxyl sulfate were increased in high vs. low fecal calprotectin groups. These changes were partially mediated by the gut microbiota. Moreover, the high fecal calprotectin group showed increased BMI and a higher disease prevalence of heart attack and obesity. Our findings contribute to the understanding of fecal calprotectin as a marker of gut dysbiosis and its broader systemic and clinical implications in older individuals.


Assuntos
Biomarcadores , Disbiose , Fezes , Microbioma Gastrointestinal , Complexo Antígeno L1 Leucocitário , Humanos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/metabolismo , Fezes/microbiologia , Fezes/química , Disbiose/diagnóstico , Idoso , Feminino , Masculino , Biomarcadores/sangue , Biomarcadores/análise , Pessoa de Meia-Idade , Estudos de Coortes , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia
4.
Cell Stress Chaperones ; 29(3): 392-403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608859

RESUMO

Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Carbono/metabolismo , Epigênese Genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Interferência de RNA
5.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
6.
Mol Cancer Ther ; 23(8): 1073-1083, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561023

RESUMO

CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.


Assuntos
Anticorpos Monoclonais Humanizados , Imunoconjugados , Leucemia Mieloide Aguda , Oligopeptídeos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Ratos , Anticorpos Monoclonais Humanizados/farmacologia , Oligopeptídeos/farmacologia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Aminobenzoatos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Feminino
7.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664378

RESUMO

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Assuntos
Colo , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superfície Celular , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Colo/metabolismo , Colo/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Transplante de Microbiota Fecal , Simbiose , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
8.
Clin Transl Sci ; 17(3): e13740, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411371

RESUMO

Fibromyalgia patients vary in clinical phenotype and treatment can be challenging. The pathophysiology of fibromyalgia is incompletely understood but appears to involve metabolic changes at rest or in response to stress. We enrolled 54 fibromyalgia patients and 31 healthy controls to this prospective study. Symptoms were assessed using the Fibromyalgia Impact Questionnaire (FIQ) and blood samples were collected for metabolomics analysis at baseline and after an oral glucose tolerance test and a cardiopulmonary exercise test. We identified key symptoms of fibromyalgia and related them to changes in metabolic pathways with supervised and unsupervised machine learning methods. Algorithms trained with the FIQ information assigned the fibromyalgia diagnosis in new data with balanced accuracy of 88% while fatigue alone already provided the diagnosis with 86% accuracy. Supervised analyses reduced the metabolomic information from 77 to 13 key markers. With these metabolites, fibromyalgia could be identified in new cases with 79% accuracy. In addition, 5-hydroxyindole-3-acetic acid and glutamine levels correlated with the severity of fatigue. Patients differed from controls at baseline in tyrosine and purine pathways, and in the pyrimidine pathway after the stress challenges. Several key markers are involved in glutaminergic neurotransmission. This data-driven analysis highlights fatigue as a key symptom of fibromyalgia. Fibromyalgia is associated with metabolic changes which also reflect the degree of fatigue. Responses to metabolic and physical stresses result in a metabolic pattern that allows discrimination of fibromyalgia patients from controls and narrows the focus on key pathophysiological processes in fibromyalgia as treatment targets.


Assuntos
Fibromialgia , Humanos , Fibromialgia/diagnóstico , Tirosina , Estudos Prospectivos , Fadiga/diagnóstico , Fadiga/etiologia , Aprendizado de Máquina , Purinas , Pirimidinas
9.
Mov Disord ; 39(2): 360-369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899683

RESUMO

BACKGROUND: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS: A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS: NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS: Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Telangiectasia , Niacinamida , Animais , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Movimentos Oculares , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Niacinamida/análogos & derivados , Compostos de Piridínio/uso terapêutico
10.
Thyroid ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38062777

RESUMO

Background: Papillary thyroid cancer (PTC) is the predominant subtype of thyroid cancer (THCA), and it can cluster in families with an autosomal dominant (AD) inheritance pattern. The aim of this study was to identify novel genes and mechanisms underlying PTC susceptibility. Methods: Our previous investigation of 17 AD PTC families led us to conduct a deeper analysis on one family (Family Q) with whole-genome sequencing data from 3 PTC-affected individuals. In addition, 323 sporadic THCA cases from Avatar data and 12 familial adenomatous polyposis (FAP) individuals with secondary THCA were screened for pyruvate dehydrogenase phosphatase regulatory (PDPR) variants. CRISPR-Cas9 was used to create PDPR-deficient THCA (TPC1) and transformed normal thyroid cell lines (N-Thyori3-1) to study the metabolic consequences of PDPR loss. Results: We found truncating PDPR splice donor variants (NM_017990.4:c.361 + 1G>C) in all affected PTC Family Q members, and another PDPR splice donor variant (NM_017990.4:c.443 + 1G>C) in a sporadic PTC case. In addition, an ultra-rare missense variant was found in an FAP-PTC patient. The PDPR-deficient cells presented with elevated phosphorylation of pyruvate dehydrogenase and altered glucose metabolism, implying that PDPR plays an essential part in regulating glucose metabolism in thyroid cells. Conclusions: Our finding of novel truncating germline variants in PDPR in Family Q and additional cohorts suggests a role for PDPR loss in PTC predisposition. Also, somatic and RNA sequencing from the thyroid carcinoma (Firehouse Legacy) data showed that PDPR gene expression is much lower in THCA tumor tissue compared with matching normal tissue. Thus, PDPR appears to have a loss of function effect on THCA tumorigenesis.

11.
Front Physiol ; 14: 1295852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143912

RESUMO

Background: Metabolite-based sensors are attractive and highly valued for monitoring physiological parameters during rest and/or during physical activities. Owing to their molecular composition consisting of nucleic acids, proteins, and metabolites, extracellular vesicles (EVs) have become acknowledged as a novel tool for disease diagnosis. However, the evidence for sweat related EVs delivering information of physical and recovery states remains to be addressed. Methods: Taking advantage of our recently published methodology allowing the enrichment and isolation of sweat EVs from clinical patches, we investigated the metabolic load of sweat EVs in healthy participants exposed to exercise test or recovery condition. -Ten healthy volunteers (-three females and -seven males) were recruited to participate in this study. During exercise test and recovery condition, clinical patches were attached to participants' skin, on their back. Following exercise test or recovery condition, the patches were carefully removed and proceed for sweat EVs isolation. To explore the metabolic composition of sweat EVs, a targeted global metabolomics profiling of 41 metabolites was performed. Results: Our results identified seventeen metabolites in sweat EVs. These are associated with amino acids, glutamate, glutathione, fatty acids, creatine, and glycolysis pathways. Furthermore, when comparing the metabolites' levels in sweat EVs isolated during exercise to the metabolite levels in sweat EVs collected after recovery, our findings revealed a distinct metabolic profiling of sweat EVs. Furthermore, the level of these metabolites, mainly myristate, may reflect an inverse correlation with blood glucose, heart rate, and respiratory rate levels. Conclusion: Our data demonstrated that sweat EVs can be purified using routinely used clinical patches during physical activity, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant sport performance biomarkers. This study thus provides proof-of-concept towards a novel methodology that will focus on the use of sweat EVs and their metabolic composition as a non-invasive approach for developing the next-generation of sport wearable sensors.

12.
Sci Adv ; 9(32): eadf7119, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556547

RESUMO

Obesity and type 2 diabetes (T2D) are growing health challenges with unmet treatment needs. Traf2- and NCK-interacting protein kinase (TNIK) is a recently identified obesity- and T2D-associated gene with unknown functions. We show that TNIK governs lipid and glucose homeostasis in Drosophila and mice. Loss of the Drosophila ortholog of TNIK, misshapen, altered the metabolite profiles and impaired de novo lipogenesis in high sugar-fed larvae. Tnik knockout mice exhibited hyperlocomotor activity and were protected against diet-induced fat expansion, insulin resistance, and hepatic steatosis. The improved lipid profile of Tnik knockout mice was accompanied by enhanced skeletal muscle and adipose tissue insulin-stimulated glucose uptake and glucose and lipid handling. Using the T2D Knowledge Portal and the UK Biobank, we observed associations of TNIK variants with blood glucose, HbA1c, body mass index, body fat percentage, and feeding behavior. These results define an untapped paradigm of TNIK-controlled glucose and lipid metabolism.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Obesidade , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
13.
Cell Rep ; 42(7): 112739, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405919

RESUMO

The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.


Assuntos
Proteínas de Drosophila , Proteínas Repressoras , Ribossomos , Açúcares , Animais , Camundongos , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ribossomos/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo
14.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108669

RESUMO

Cell-secreted extracellular vesicles (EVs), carrying components such as RNA, DNA, proteins, and metabolites, serve as candidates for developing non-invasive solutions for monitoring health and disease, owing to their capacity to cross various biological barriers and to become integrated into human sweat. However, the evidence for sweat-associated EVs providing clinically relevant information to use in disease diagnostics has not been reported. Developing cost-effective, easy, and reliable methodologies to investigate EVs' molecular load and composition in the sweat may help to validate their relevance in clinical diagnosis. We used clinical-grade dressing patches, with the aim being to accumulate, purify and characterize sweat EVs from healthy participants exposed to transient heat. The skin patch-based protocol described in this paper enables the enrichment of sweat EVs that express EV markers, such as CD63. A targeted metabolomics study of the sweat EVs identified 24 components. These are associated with amino acids, glutamate, glutathione, fatty acids, TCA, and glycolysis pathways. Furthermore, as a proof-of-concept, when comparing the metabolites' levels in sweat EVs isolated from healthy individuals with those of participants with Type 2 diabetes following heat exposure, our findings revealed that the metabolic patterns of sweat EVs may be linked with metabolic changes. Moreover, the concentration of these metabolites may reflect correlations with blood glucose and BMI. Together our data revealed that sweat EVs can be purified using routinely used clinical patches, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant disease biomarkers. This study thus provides a proof-of-concept towards a novel methodology that will focus on the use of the sweat EVs and their metabolites as a non-invasive approach, in order to monitor wellbeing and changes in diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Humanos , Suor , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Metabolômica , Transporte Biológico
15.
Eur J Psychotraumatol ; 14(1): 2191396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36987752

RESUMO

Background: Sexual and physical abuse have been associated with long-term systemic alterations such as low-grade inflammation and changes in brain morphology that may be reflected in the metabolome. However, data on the metabolic consequences of sexual and physical abuse remain scarce.Objective: This pilot study sought to investigate changes in the metabolite profile related to sexual and physical abuse in depressed adolescent psychiatric outpatients.Method: The study included 76 patients aged 14-18 years, whose serum samples were analysed with a targeted metabolite profiling methodology. We estimated the associations between metabolite concentrations and the Trauma and Distress Scale (TADS) Sexual and Physical Abuse factor scores using three linear regression models (one unadjusted and two adjusted) per metabolite and trauma type pair. Additional variables in the two adjusted models were 1) the lifestyle indicators body mass index, tobacco use, and alcohol use, and 2) depression scores and the chronicity of depression.Results: TADS Sexual Abuse scores associated positively with homogentisic acid, as well as cystathionine, and negatively with choline in linear regression analysis, whereas TADS Physical Abuse scores associated negatively with AMP, choline, γ-glutamyl cysteine and succinate, and positively with D-glucuronic acid.Conclusions: This pilot study did not include a healthy control group for comparison and the cohort was relatively small. Nevertheless, we observed alterations in metabolites related to one-carbon metabolism, mitochondrial dysfunction, oxidative stress, and inflammation in depressed patients with a history of sexual or physical abuse.


Metabolomic profiles associate with sexual or physical abuse.Metabolites relate to mitochondria, one-carbon, oxidative stress, and inflammation.Metabolomics a possible tool for precision psychiatry in the future.


Assuntos
Abuso Sexual na Infância , Criança , Humanos , Adolescente , Abuso Sexual na Infância/psicologia , Abuso Físico , Projetos Piloto , Pacientes Ambulatoriais , Metaboloma , Inflamação
16.
iScience ; 26(1): 105895, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590899

RESUMO

COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.

17.
J Intern Med ; 293(2): 228-245, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324273

RESUMO

BACKGROUND: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipoproteinemia Tipo II , Animais , Ratos , LDL-Colesterol , Espécies Reativas de Oxigênio/metabolismo , Hiperlipoproteinemia Tipo II/complicações , Eritrócitos/metabolismo
18.
Commun Biol ; 5(1): 1060, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198903

RESUMO

Effective protein import from cytosol is critical for mitochondrial functions and metabolic regulation. We describe here the mammalian muscle-specific and systemic consequences to disrupted mitochondrial matrix protein import by targeted deletion of the mitochondrial HSP70 co-chaperone GRPEL1. Muscle-specific loss of GRPEL1 caused rapid muscle atrophy, accompanied by shut down of oxidative phosphorylation and mitochondrial fatty acid oxidation, and excessive triggering of proteotoxic stress responses. Transcriptome analysis identified new responders to mitochondrial protein import toxicity, such as the neurological disease-linked intermembrane space protein CHCHD10. Besides communication with ER and nucleus, we identified crosstalk of distressed mitochondria with peroxisomes, in particular the induction of peroxisomal Acyl-CoA oxidase 2 (ACOX2), which we propose as an ATF4-regulated peroxisomal marker of integrated stress response. Metabolic profiling indicated fatty acid enrichment in muscle, a shift in TCA cycle intermediates in serum and muscle, and dysregulated bile acids. Our results demonstrate the fundamental importance of GRPEL1 and provide a robust model for detecting mammalian inter-organellar and systemic responses to impaired mitochondrial matrix protein import and folding.


Assuntos
Ácidos Graxos , Músculo Esquelético , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos/metabolismo , Mamíferos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Transporte Proteico
19.
Redox Biol ; 55: 102416, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921774

RESUMO

BACKGROUND: Overexpression of the transsulfuration enzyme cystathionine-ß-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. METHODS: 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. RESULTS: DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. 13C glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. CONCLUSIONS: Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.

20.
Mol Genet Metab Rep ; 31: 100863, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782600

RESUMO

Hyperornithinemia with gyrate atrophy of the choroid and retina (HOGA) is a severe recessive inherited disease, causing muscular degeneration and retinochoroidal atrophy that progresses to blindness. HOGA arises from mutations in the ornithine aminotransferase (OAT) gene, and nearly one-third of the known patients worldwide are homozygous for the Finnish founder mutation OAT c.1205 T > C p.(Leu402Pro). We have corrected this loss-of-function OAT mutation in patient-derived induced pluripotent stem cells (iPSCs) using CRISPR/Cas9. The correction restored OAT expression in stem cells and normalized the elevated ornithine levels in cell lysates and cell media. These results show an efficient recovery of OAT function in iPSC, encouraging the possibility of autologous cell therapy for the HOGA disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...