Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Sci ; 130(14): 2306-2316, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576968

RESUMO

The nuclear basket of nuclear pore complexes (NPCs) is composed of three nucleoporins: Nup153, Nup50 and Tpr. Nup153 has a role in DNA double-strand break (DSB) repair by promoting nuclear import of 53BP1 (also known as TP53BP1), a mediator of the DNA damage response. Here, we provide evidence that loss of Nup153 compromises 53BP1 sumoylation, a prerequisite for efficient accumulation of 53BP1 at DSBs. Depletion of Nup153 resulted in reduced SUMO1 modification of 53BP1 and the displacement of the SUMO protease SENP1 from NPCs. Artificial tethering of SENP1 to NPCs restored non-homologous end joining (NHEJ) in the absence of Nup153 and re-established 53BP1 sumoylation. Furthermore, Nup50 and Tpr, the two other nuclear basket nucleoporins, also contribute to proper DSB repair, in a manner distinct from Nup153. Similar to the role of Nup153, Tpr is implicated in NHEJ and homologous recombination (HR), whereas loss of Nup50 only affects NHEJ. Despite the requirement of all three nucleoporins for accurate NHEJ, only Nup153 is needed for proper nuclear import of 53BP1 and SENP1-dependent sumoylation of 53BP1. Our data support the role of Nup153 as an important regulator of 53BP1 activity and efficient NHEJ.


Assuntos
Cisteína Endopeptidases/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sumoilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
2.
Cells ; 6(2)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471392

RESUMO

Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.

3.
PLoS One ; 11(3): e0152321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031510

RESUMO

Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.


Assuntos
Membrana Nuclear/genética , Membrana Nuclear/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Ciclo Celular , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Camundongos , Mitose , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...