Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(12): 6811-6822, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098406

RESUMO

NaHCO3-activated buckwheat biochar was studied, and an optimal biochar of 0.25N-BC [m(NaHCO3):m(buckwheat bark)=0.25:1]was selected. SEM, BET, XRD, Raman, FTIR, and XPS methods were applied to analyze the effects of NaHCO3 on the physicochemical properties of buckwheat biochar. The adsorption properties and mechanism of NaHCO3-activated buckwheat biochar for iopamidol(IPM), a nonionic iodol X-ray contrast agent, were also investigated. The results showed that compared with buckwheat skin biochar(BC), NaHCO3-activated biochar had higher structural defects(surface area and pore volume increased, respectively, from 480.40 m2·g-1 and 0.29 cm3·g-1 to 572.83 m2·g-1 and 0.40 cm3·g-1, with ID/IG being 1.22 times that of BC), the carbon and oxygen functional groups on the BC surface changed significantly, and the polarity increased [(N+O)/C from 0.15 to 0.24]. The maximum adsorption capacity of 0.25N-BC for IPM was 74.94 mg·g-1, which was 9.51 times that of BC(7.88 mg·g-1). The pseudo-second-order adsorption kinetics and Langmuir and Freundlich isotherm models could well fit the adsorption of 0.25N-BC for IPM. The adsorption processes were mainly chemical, monolayer, and heterogeneous multilayer adsorption. Pore filling, hydrogen bonding, π-π, and n-π interactions were the main mechanisms of 0.25N-BC adsorption for IPM. Comparing the activated buckwheat biochar by different bases [KOH, Na2CO3, NaHCO3, KHCO3, and Ca(HCO3)2], 0.25N-BC exhibited high adsorption capability and short equilibrium time and could effectively remove the IPM residue in the actual water(secondary sedimentation tank effluent and lake). The removal rate of IPM remained at 74.91% after three adsorption-desorption cycles. The results showed that NaHCO3-activated buckwheat biochar was a green, effective, and sustainable adsorbent for the removal of iodine-containing organic matter.


Assuntos
Fagopyrum , Poluentes Químicos da Água , Iopamidol , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...