Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(9): 14210-14229, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35998570

RESUMO

Peptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive. In this study, we investigated the absorption mechanisms of four insulin-loaded arginine-rich nanoparticles displaying differing composition and surface characteristics, developed within the pan-European consortium TRANS-INT. The transport mechanisms and major barriers to nanoparticle permeability were investigated in freshly isolated human jejunal tissue. Cytokine release profiles and standard toxicity markers indicated that the nanoparticles were nontoxic. Three out of four nanoparticles displayed pronounced binding to the mucus layer and did not reach the epithelium. One nanoparticle composed of a mucus inert shell and cell-penetrating octarginine (ENCP), showed significant uptake by the intestinal epithelium corresponding to 28 ± 9% of the administered nanoparticle dose, as determined by super-resolution microscopy. Only a small fraction of nanoparticles taken up by epithelia went on to be transcytosed via a dynamin-dependent process. In situ studies in intact rat jejunal loops confirmed the results from human tissue regarding mucus binding, epithelial uptake, and negligible insulin bioavailability. In conclusion, while none of the four arginine-rich nanoparticles supported systemic insulin delivery, ENCP displayed a consistently high uptake along the intestinal villi. It is proposed that ENCP should be further investigated for local delivery of therapeutics to the intestinal mucosa.


Assuntos
Produtos Biológicos , Nanopartículas , Administração Oral , Animais , Arginina , Produtos Biológicos/metabolismo , Citocinas/metabolismo , Portadores de Fármacos/química , Humanos , Insulina/química , Absorção Intestinal , Mucosa Intestinal , Nanopartículas/química , Ratos
2.
J Cardiothorac Surg ; 16(1): 194, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233689

RESUMO

OBJECTIVE: C-erbB-2 has been confirmed to be an oncogene that participates in cell growth, differentiation and division of tumors. We are wondered if its silenced expression can exert an anti-tumor effect. Therefore, this study is conducted to investigate the mechanism of C-erbB-2 silencing and IGF-1 pathway on esophageal carcinoma (EC) cell biological behaviors. METHODS: The objects of study were 84 EC patients from Heping Hospital Affiliated to Changzhi Medical College, with the collection of EC tissue and adjacent normal tissue (> 5 cm away from cancer tissue). C-erbB-2 protein expression in EC tissues was detected by immunohistochemistry. Human EC cell line Eca-109 was purchased from Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. Based on different transfection protocols, EC cells with logarithmic growth phase of 3-5 passages were divided into blank control group, oe-C-erbB-2 NC group, siRNA C-erbB-2 NC group, oe-C-erbB-2 group, siRNA C-erbB-2 group, OSI-906 group, Rg5 group, Rg5 + siRNA C-erbB-2 NC group and Rg5 + siRNA C-erbB-2 group. Cell proliferation was detected by MTT assay; cell cycle distribution and apoptosis by flow cytometry; C-erbB-2, IGF-1, IGF-1R and Akt mRNA and protein expressions by qRT-PCR and western blot; and cell invasion and migration by Transwell assay and scratch test. Tumor growth was observed in male BALB/c nude mice (Shanghai Experimental Animal Center) based on Eca109 cell implantation, raising, and measurement. RESULTS: C-erbB-2, IGF-1, IGF-1R and Akt expression were higher in EC tissues than those in adjacent tissues (all P < 0.05). Compared with blank control group, both si-C-erbB-2 and OSI-906 groups had decreased IGF-1, IGF-1R and Akt mRNA and protein expressions, decreased cell proliferation, migration and invasion, prolonged G0/G1 phase, shortened S phase, increased cell apoptosis, and inhibited tumor growth (all P < 0.05); while opposite trends were detected in C-erbB-2 vector and Rg5 groups (all P < 0.05), without statistical differences in siRNA C-erbB-2 + Rg5 group (all P > 0.05). CONCLUSION: Silencing C-erbB-2 expression may inhibit EC cell proliferation, promote cell apoptosis and block cell cycle progression by inhibiting IGF-1 pathway activation. The beneficial effect of silencing C-erbB-2 expression can be reversed by promoting the activation of IGF-1 pathway. Findings in our study may provide potential reference for understanding the molecular mechanism of EC and supply possible axis for preventing the development of EC from the perspective of molecular biology.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Receptor ErbB-2/genética , Adulto , Idoso , Animais , Apoptose/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1 , Transfecção
3.
J Control Release ; 327: 444-455, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853729

RESUMO

In this work, we sought to incorporate coenzyme Q10-loaded nanoemulsions into a food system and to understand the impact of food digestion on the in vivo bioavailability of this bioactive compound. We selected octenyl succinic anhydride modified starch as emulsifier to prepare the nanoemulsions (with approximately 200 nm droplet diameter) after comparing with two other food-grade surfactants (whey protein isolate and lecithin) in terms of their colloidal stability during simulated gastrointestinal digestion. The change in ζ-potential revealed that the initial emulsifier might be partially replaced by bile salts under intestinal conditions, and the mixed micelles formed after digestion showed an apparent permeability coefficient of 4.79 × 10-6 cm/s in a rat intestinal epithelial cell line, without compromising the trans-epithelial electrical resistance. In a second step, a high protein beverage that incorporated the coenzyme Q10-loaded nanoemulsion was developed in a food pilot plant. The beverage had a particle size of D4,3 = 18 µm and D3,2 = 2.5 µm, corresponding to its different components. The changes in particle morphology and size distribution were analysed to understand the behaviour of this beverage during simulated gastrointestinal digestion. When coenzyme Q10 was encapsulated into the nanoemulsions and the beverage, its bioavailability in vivo increased 1.8- and 2.8-fold respectively, compared with coenzyme Q10 dissolved in oil. The higher coenzyme Q10 bioavailability in the beverage was probably because of a significantly higher level of lipolytic activity found for beverage than for nanoemulsions during gastrointestinal digestion. These results show the potential of using natural food materials to generate formulations to improve the bioavailability of bioactive compounds. More importantly, we highlight the influence of food digestion (i.e. lipolysis) on the absorption of hydrophobic bioactive components and suggest that food systems can be utilised as a dosage form to further enhance oral bioavailability.


Assuntos
Trato Gastrointestinal , Animais , Disponibilidade Biológica , Emulsões/metabolismo , Trato Gastrointestinal/metabolismo , Tamanho da Partícula , Ratos , Ubiquinona/análogos & derivados
4.
Biosci Biotechnol Biochem ; 84(10): 2014-2027, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619135

RESUMO

Effect of miR-216a-3p on lung cancer hasn't been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.


Assuntos
Apoptose/genética , Movimento Celular/genética , Proteína Coatomer/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
5.
Adv Mater ; 32(13): e1901935, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31222910

RESUMO

The emerging field of precision medicine is rapidly growing, fostered by the advances in genome mapping and molecular diagnosis. In general, the translation of these advances into precision treatments relies on the use of biological macromolecules, whose structure offers a high specificity and potency. Unfortunately, due to their complex structure and limited ability to overcome biological barriers, these macromolecules need to be administered via injection. The scientific community has devoted significant effort to making the oral administration of macromolecules plausible thanks to the implementation of drug delivery technologies. Here, an overview of the current situation and future prospects in the field of oral delivery of biologics is provided. Technologies in clinical trials, as well as recent and disruptive delivery systems proposed in the literature for local and systemic delivery of biologics including peptides, antibodies, and nucleic acids, are described. Strategies for the specific targeting of gastrointestinal regions-stomach, small bowel, and colon-cell populations, and internalization pathways, are analyzed. Finally, challenges associated with the clinical translation, future prospects, and identified opportunities for advancement in this field are also discussed.


Assuntos
Produtos Biológicos/administração & dosagem , Medicina de Precisão/métodos , Administração Oral , Animais , Anticorpos/administração & dosagem , Anticorpos/uso terapêutico , Produtos Biológicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/uso terapêutico , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico
6.
J Colloid Interface Sci ; 546: 312-323, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30927595

RESUMO

An electrostatic nanocomplex between naturally occurring ε-poly-l-lysine (εPL) and ß-cyclodextrin sulphate (sCD) was designed, and its capacity to entrap four model proteins with high or low molecular weight and isoelectric point, i.e., lactoferrin, albumin, actinidin, and lysozyme, was investigated. The optimal formulations gave nanocomplexes with an average diameter around 276 ±â€¯16 nm, a ζ-potential of -39 ±â€¯1.5 mV, and a spherical shape with a core-shell structure. Different strategies were pursued to increase the entrapment efficiency for selected proteins, which led to 40-100% entrapment depending on the protein type. Under simulated gastric conditions with pepsin, the complexes protected lactoferrin and albumin against proteolysis, whereas actinidin and lysozyme were intrinsically stable. In Caco-2 cells, these complexes transiently decreased the trans-epithelial electrical resistance, indicating the potential to enhance the paracellular permeability of bioactive macromolecules. Thus, these εPL-sCD complexes would be a promising system for loading diverse proteins for gastric protection and enhancing intestinal absorption.


Assuntos
Albuminas/metabolismo , Cisteína Endopeptidases/metabolismo , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal/efeitos dos fármacos , Lactoferrina/metabolismo , Muramidase/metabolismo , Polilisina/farmacologia , Substâncias Protetoras/farmacologia , beta-Ciclodextrinas/farmacologia , Albuminas/análise , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteína Endopeptidases/análise , Relação Dose-Resposta a Droga , Humanos , Lactoferrina/análise , Estrutura Molecular , Muramidase/análise , Tamanho da Partícula , Polilisina/química , Substâncias Protetoras/química , Relação Estrutura-Atividade , Propriedades de Superfície , beta-Ciclodextrinas/química
7.
J Control Release ; 276: 125-139, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29518466

RESUMO

The objective of this work was the development of a new drug nanocarrier intended to overcome the barriers associated to the oral modality of administration and to assess its value for the systemic or local delivery of peptides. The nanocarrier was rationally designed taking into account the nature of the intestinal barriers and was loaded with insulin, which was selected as a model peptide. The nanocarrier consisted of a complex between insulin and a hydrophobically-modified cell penetrating peptide (CPP), enveloped by a protecting polymer. The selected CPP was octaarginine (r8), chemically conjugated with cholesterol (Chol) or lauric acid (C12), whereas the protecting polymer was poly (glutamic acid)-poly (ethylene glycol) (PGA-PEG). This enveloping material was intended to preserve the stability of the nanocomplex in the intestinal medium and facilitate its diffusion across the intestinal mucus. The enveloped nanocomplexes (ENCPs) exhibited a number of key features, namely (i) a unimodal size distribution with a mean size of 200 nm and a neutral zeta potential, (ii) the capacity to associate insulin (~100% association efficiency) and protect it from degradation in simulated intestinal fluids, (iii) the ability to diffuse through intestinal mucus and, most importantly, (iv) the capacity to interact with the Caco-2 model epithelium, resulting in a massive insulin cell uptake (47.59 ±â€¯5.79%). This enhanced accumulation of insulin at the epithelial level was not translated into an enhanced insulin transport. In fact, only 2% of insulin was transported across the monolayer, and this was correlated with a moderate response of insulin following oral administration to healthy rats. Despite of this, the accumulation of the insulin-loaded nanocarriers in the intestinal mucosa could be verified in vivo upon their labeling with 99mTc. Overall, these data underline the capacity of the nanocarriers to overcome substantial barriers associated to the oral modality of administration and to facilitate the accumulation of the associated peptide at the intestinal level.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Portadores de Fármacos/administração & dosagem , Insulina/administração & dosagem , Nanoestruturas/administração & dosagem , Oligopeptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácido Poliglutâmico/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Colesterol/química , Humanos , Mucosa Intestinal/metabolismo , Ácidos Láuricos/química , Masculino , Ratos Sprague-Dawley , Ratos Wistar
8.
J Control Release ; 263: 4-17, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28235590

RESUMO

The aim of this work was to rationally design and characterize nanocapsules (NCs) composed of an oily core and a polyarginine (PARG) shell, intended for oral peptide delivery. The cationic polyaminoacid, PARG, and the oily core components were selected based on their penetration enhancing properties. Insulin was adopted as a model peptide to assess the performance of the NCs. After screening numerous formulation variables, including different oils and surfactants, we defined a composition consisting of oleic acid, sodium deoxycholate (SDC) and Span 80. This selected NCs composition, produced by the solvent displacement technique, exhibited the following key features: (i) an average size of 180nm and a low polydispersity (0.1), (ii) a high insulin association efficacy (80-90% AE), (iii) a good colloidal stability upon incubation in simulated intestinal fluids (SIF, FaSSIF-V2, FeSSIF-V2), and (iv) the capacity to control the release of the associated insulin for >4h. Furthermore, using the Caco-2 model cell line, PARG nanocapsules were able to interact with the enterocytes, and reversibly modify the TEER of the monolayer. Both cell adhesion and membrane permeabilization could account for the pronounced transport of the NCs-associated insulin (3.54%). This improved interaction was also visualized by confocal fluorescent microscopy following oral administration of PARG nanocapsulesto mice. Finally, in vivo efficacy studies performed in normoglycemic rats showed a significant decrease in their plasma glucose levels after treatment. In conclusion, here we disclose key formulation elements for making possible the oral administration of peptides.


Assuntos
Portadores de Fármacos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Absorção Intestinal , Nanocápsulas/administração & dosagem , Peptídeos/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Células CACO-2 , Portadores de Fármacos/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/química , Insulina/química , Mucosa Intestinal/metabolismo , Secreções Intestinais/química , Masculino , Nanocápsulas/química , Peptídeos/química , Ratos Sprague-Dawley
9.
Adv Drug Deliv Rev ; 106(Pt B): 337-354, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080735

RESUMO

This article is aimed to overview the lipid-based nanostructures designed so far for the oral administration of peptides and proteins, and to analyze the influence of their composition and physicochemical (particle size, zeta potential) and pharmaceutical (drug loading and release) properties, on their interaction with the gastro-intestinal environment, and the subsequent PK/PD profile of the associated drugs. The ultimate goal has been to highlight and comparatively analyze the key factors that may be determinant of the success of these nanocarriers for oral peptide delivery. The article ends with some prospects on the challenges to be addressed for the intended commercial success of these delivery vehicles.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Administração Oral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...