Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547165

RESUMO

Water quality monitoring is a critical process in maintaining the well-being of aquatic ecosystems and ensuring growth of the surrounding environment. Clean water supports and maintains the health, livelihoods, and ecological balance of the ecosystem as a whole. Regular assessment of water quality is essential to ensure clean and reliable water is available to everyone. This requires regular measurement of pollutants or contaminants in water that can be monitored in real-time. Hence, this research showcases a system that consists of low-cost sensors used to measure five basic parameters of water quality that are: turbidity, total dissolved solids, temperature, pH, and dissolved oxygen. The system incorporates electronics and IoT technology that are powered by a solar charged lead acid battery. The data gathered from the sensors was stored locally on a micro-SD card with live updates that could be viewed on a mobile device when in proximity to the system. Data was gathered from three different bodies of water over a span of three weeks, precisely during the seasonal transition from autumn to winter. We adopted a water sampling technique since our low-cost sensors were not designed for continuous submersion. The results show that the temperature drops gradually during this period and an inversely proportional relationship between pH and temperature could be observed. The concentration of total dissolved solids decreased during rainy periods with a variation in turbidity. The deployed system was robust and autonomous that effectively monitored the quality of water in real-time with scope of adding more sensors and employing Industry 4.0 paradigm to predict variations in water quality.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Ecossistema , Lagos , Poluentes Químicos da Água/análise
2.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050481

RESUMO

Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.


Assuntos
Gestos , Reconhecimento Automatizado de Padrão , Humanos , Teorema de Bayes , Reconhecimento Automatizado de Padrão/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Mãos , Algoritmos
3.
Nanomaterials (Basel) ; 12(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893505

RESUMO

This paper presents an all-dielectric, cascaded, multilayered, thin-film filter, allowing near-infrared filtration for spectral imaging applications. The proposed design is comprised of only eight layers of amorphous silicon (A-Si) and silicon nitride (Si3N4), successively deposited on a glass substrate. The finite difference time domain (FDTD) simulation results demonstrate a distinct peak in the near-infrared (NIR) region with transmission efficiency up to 70% and a full-width-at-half-maximum (FWHM) of 77 nm. The theoretical results are angle-insensitive up to 60∘ and show polarization insensitivity in the transverse magnetic (TM) and transverse electric (TE) modes. The theoretical response, obtained with the help of spectroscopic ellipsometry (SE), is in good agreement with the experimental result. Likewise, the experimental results for polarization insensitivity and angle invariance of the thin films are in unison with the theoretical results, having an angle invariance up to 50∘.

4.
Sensors (Basel) ; 21(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066704

RESUMO

This paper presents an autonomous method of collecting data for Visible Light Positioning (VLP) and a comprehensive investigation of VLP using a large set of experimental data. Received Signal Strength (RSS) data are efficiently collected using a novel method that utilizes consumer grade Virtual Reality (VR) tracking for accurate ground truth recording. An investigation into the accuracy of the ground truth system showed median and 90th percentile errors of 4.24 and 7.35 mm, respectively. Co-locating a VR tracker with a photodiode-equipped VLP receiver on a mobile robotic platform allows fingerprinting on a scale and accuracy that has not been possible with traditional manual collection methods. RSS data at 7344 locations within a 6.3 × 6.9 m test space fitted with 11 VLP luminaires is collected and has been made available for researchers. The quality and the volume of the data allow for a robust study of Machine Learning (ML)- and channel model-based positioning utilizing visible light. Among the ML-based techniques, ridge regression is found to be the most accurate, outperforming Weighted k Nearest Neighbor, Multilayer Perceptron, and random forest, among others. Model-based positioning is more accurate than ML techniques when a small data set is available for calibration and training. However, if a large data set is available for training, ML-based positioning outperforms its model-based counterparts in terms of localization accuracy.

5.
BMC Res Notes ; 14(1): 78, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33640024

RESUMO

OBJECTIVE: Small angle X-ray scattering (SAXS) analysis is a sensitive way of determining the ultrastructure of collagen in tissues. Little is known about how parameters measured by SAXS are affected by preservatives commonly used to prevent autolysis. We determined the effects of formalin, glutaraldehyde, Triton X and saline on measurements of fibril diameter, fibril diameter distribution, and D-spacing of corneal collagen using SAXS analysis. RESULTS: Compared to sections of sheep and cats' corneas stored frozen as controls, those preserved in 5% glutaraldehyde and 10% formalin had significantly larger mean collagen fibril diameters, increased fibril diameter distribution and decreased D-spacing. Sections of corneas preserved in Triton X had significantly increased collagen fibril diameters and decreased fibril diameter distribution. Those preserved in 0.9% saline had significantly increased mean collagen fibril diameters and decreased diameter distributions. Subjectively, the corneas preserved in 5% glutaraldehyde and 10% formalin maintained their transparency but those in Triton X and 0.9% saline became opaque. Subjective morphological assessment of transmission electron microscope images of corneas supported the SAXS data. Workers using SAXS analysis to characterize collagen should be alerted to changes that can be introduced by common preservatives in which their samples may have been stored.


Assuntos
Colágeno , Córnea , Animais , Gatos , Projetos Piloto , Espalhamento a Baixo Ângulo , Ovinos , Difração de Raios X , Raios X
6.
Nanomaterials (Basel) ; 10(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784749

RESUMO

Color plays an important role in human life: without it life would be dull and monochromatic. Printing color with distinct characteristics, like hue, brightness and saturation, and high resolution, are the main characteristic of image sensing devices. A flexible design of color filter is also desired for angle insensitivity and independence of direction of polarization of incident light. Furthermore, it is important that the designed filter be compatible with the image sensing devices in terms of technology and size. Therefore, color filter requires special care in its design, operation and integration. In this paper, we present a comprehensive review of nanostructured color filter designs described to date and evaluate them in terms of their performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...