Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Pharmacol Rep ; 75(4): 771-790, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37179259

RESUMO

Astaxanthin (AXT) is a red fat-soluble pigment found naturally in aquatic animals, plants, and various microorganisms and can be manufactured artificially using chemical catalysis. AXT is a xanthophyll carotenoid with a high potential for scavenging free radicals. Several studies have investigated AXT efficacy against diseases such as neurodegenerative, ocular, skin, and cardiovascular hypertension, diabetes, gastrointestinal and liver diseases, and immuno-protective functions. However, its poor solubility, low stability to light and oxygen, and limited bioavailability are major obstacles hindering its wide applications as a therapeutic agent or nutritional supplement. Incorporating AXT with nanocarriers holds great promise in enhancing its physiochemical properties. Nanocarriers are delivery systems with several benefits, including surface modification, bioactivity, and targeted medication delivery and release. Many approaches have been applied to enhance AXT's medicinal effect, including solid lipid nanoparticles, nanostructured lipid carriers (NLCs) and polymeric nanospheres. AXT nano-formulations have demonstrated a high antioxidant and anti-inflammatory effect, significantly affecting cancer in different organs. This review summarizes the most recent data on AXT production, characterization, biological activity, and therapeutic usage, focusing on its uses in the nanotechnology era.


Assuntos
Antioxidantes , Xantofilas , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Suplementos Nutricionais , Nanotecnologia
3.
Bioresour Bioprocess ; 10(1): 46, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647623

RESUMO

Bacterioruberin and its rare glycosylated derivatives are produced by Arthrobacter agilis as an adaptation strategy to low temperature conditions. The high antioxidant properties of bacterioruberin held great promise for different future applications like the pharmaceutical and food industries. Microbial production of bacterioruberin via a cost-effective medium will help increase its commercial availability and industrial use. The presented study aims to optimize the production of the rare C50 carotenoid bacterioruberin and its derivatives from the psychotrophic bacteria Arthrobacter agilis NP20 strain on a whey-based medium as a cost effective and readily available nutritious substrate. The aim of the study is extended to assess the efficiency of whey treatment in terms of estimating total nitrogen content in treated and untreated whey samples. The significance of medium ingredients on process outcome was first tested individually; then the most promising factors were further optimized using Box Behnken design (BBD). The produced carotenoids were characterized using UV-visible spectroscopy, FTIR spectroscopy, HPLC-DAD chromatography and HPLC-APCI-MS spectrometry. The maximum pigment yield (5.13 mg/L) was achieved after a 72-h incubation period on a core medium composed of 96% sweet whey supplemented with 0.46% MgSO4 & 0.5% yeast extract and inoculated with 6% (v/v) of a 24 h pre-culture (109 CFU/mL). The cost of the formulated medium was 1.58 $/L compared with 30.1 $/L of Bacto marine broth medium. The extracted carotenoids were identified as bacterioruberin, bis-anhydrobacteriouberin, mono anhydrobacterioruberin, and glycosylated bacterioruberin. The presented work illustrates the possibility of producing bacterioruberin carotenoid from Arthrobacter agilis through a cost-effective and eco-friendly approach using cheese whey-based medium.

4.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563094

RESUMO

Cold active esterases have gained great interest in several industries. The recently determined structure of a family IV cold active esterase (EstN7) from Bacillus cohnii strain N1 was used to expand its substrate range and to probe its commercially valuable substrates. Database mining suggested that triacetin was a potential commercially valuable substrate for EstN7, which was subsequently proved experimentally with the final product being a single isomeric product, 1,2-glyceryl diacetate. Enzyme kinetics revealed that EstN7's activity is restricted to C2 and C4 substrates due to a plug at the end of the acyl binding pocket that blocks access to a buried water-filled cavity. Residues M187, N211 and W206 were identified as key plug forming residues. N211A stabilised EstN7 allowing incorporation of the destabilising M187A mutation. The M187A-N211A double mutant had the broadest substrate range, capable of hydrolysing a C8 substrate. W206A did not appear to have any significant effect on substrate range either alone or when combined with the double mutant. Thus, the enzyme kinetics and engineering together with a recently determined structure of EstN7 provide new insights into substrate specificity and the role of acyl binding pocket plug residues in determining family IV esterase stability and substrate range.


Assuntos
Esterases , Estabilidade Enzimática , Esterases/metabolismo , Cinética , Especificidade por Substrato
5.
Open Biol ; 11(12): 210182, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847772

RESUMO

Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/ß hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.


Assuntos
Bacillus/enzimologia , Esterases/química , Bacillus/química , Proteínas de Bactérias/química , Domínio Catalítico , Temperatura Baixa , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
6.
Anal Biochem ; 591: 113554, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31863727

RESUMO

Esterases and lipases enduring harsh conditions, including low temperature and extreme tolerance to organic solvents, have attracted great attention in recent times. In the current study, a full open reading frame of 747 bp that encodes a novel, cold-adapted esterase (estHIJ) of 248 amino acids from Bacillus halodurans strain NAH-Egypt was heterologously cloned and expressed in E. coli BL21 (DE3) Rosetta. Amino acid sequence analysis revealed that estHIJ belongs to family XIII of lipolytic enzymes, with a characteristic pentapeptide motif (G-L-S-L-G). The recombinant estHIJ was purified using Ni-affinity chromatography to homogeneity with purification fold, yield, specific activity, and molecular weight (MW) of 3.5, 47.5%, 19.8 U/mg and 29 kDa, respectively. The enzyme showed preferential substrate specificity towards pNP-acetate (C2), with catalytic efficiency of 46,825 min-1 mM-1 estHIJ displayed optimal activity at 30 °C and pH (7.0-8.0). estHIJ demonstrated robust stability in the presence of 50% (v/v) non-polar solvents and 4 M NaCl after 15 h and 6 h of incubation, respectively. The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias , Esterases , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Esterases/química , Esterases/isolamento & purificação , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
7.
Int J Biol Macromol ; 120(Pt A): 1247-1255, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30063933

RESUMO

Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ±â€¯0.019 µM and 1113 µmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.


Assuntos
Bacillus/enzimologia , Esterases/química , Proteínas Recombinantes/química , Clonagem Molecular , Temperatura Baixa , Estabilidade Enzimática , Escherichia coli/genética , Esterases/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...