Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 87(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209149

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


Assuntos
Escherichia coli Êntero-Hemorrágica/enzimologia , Proteínas de Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo/fisiologia , Anaerobiose , Escherichia coli Êntero-Hemorrágica/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxirredutases/metabolismo
2.
Cell Death Discov ; 4: 22, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29531819

RESUMO

Shiga toxigenic Escherichia coli (STEC) are responsible for a worldwide foodborne disease, which is characterized by severe bloody diarrhea and hemolytic uremic syndrome (HUS). Subtilase cytotoxin (SubAB) is a novel AB5 toxin, which is produced by Locus for Enterocyte Effacement (LEE)-negative STEC. Cleavage of the BiP protein by SubAB induces endoplasmic reticulum (ER) stress, followed by induction of cytotoxicity in vitro or lethal severe hemorrhagic inflammation in mice. Here we found that steroids and diacylglycerol (DAG) analogues (e.g., bryostatin 1, Ingenol-3-angelate) inhibited SubAB cytotoxicity. In addition, steroid-induced Bcl-xL expression was a key step in the inhibition of SubAB cytotoxicity. Bcl-xL knockdown increased SubAB-induced apoptosis in steroid-treated HeLa cells, whereas SubAB-induced cytotoxicity was suppressed in Bcl-xL overexpressing cells. In contrast, DAG analogues suppressed SubAB activity independent of Bcl-xL expression at early time points. Addition of Shiga toxin 2 (Stx2) with SubAB to cells enhanced cytotoxicity even in the presence of steroids. In contrast, DAG analogues suppressed cytotoxicity seen in the presence of both toxins. Here, we show the mechanism by which steroids and DAG analogues protect cells against SubAB toxin produced by LEE-negative STEC.

3.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28294553

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Nitric oxide (NO), which acts as an antimicrobial defense molecule, was found to enhance the production of Stx1 and Stx2 in EHEC under anaerobic conditions. Although EHEC O157 has two types of anaerobic NO reductase genes, an intact norV and a deleted norV, in the deleted norV-type EHEC, a high concentration of NO (12-29 µmol/L, maximum steady-state concentration) is required for enhanced Stx1 production and a low concentration of NO (~12 µmol/L, maximum steady-state concentration) is sufficient for enhanced Stx2 production under anaerobic conditions. These results suggested that different concentration thresholds of NO elicit a discrete set of Stx1 and Stx2 production pathways. Moreover, the enhancement of Shiga toxin production in the intact norV-type EHEC required treatment with a higher concentration of NO than was required for enhancement of Shiga toxin production in the deleted norV-type EHEC, suggesting that the specific NorV type plays an important role in the level of enhancement of Shiga toxin production in response to NO. Finally, Fur derepression and RecA activation in EHEC were shown to participate in the NO-enhanced Stx1 and Stx2 production, respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Óxido Nítrico/metabolismo , Recombinases Rec A/metabolismo , Proteínas Repressoras/metabolismo , Toxina Shiga/biossíntese , Anaerobiose
4.
Toxicol Sci ; 156(2): 455-468, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087840

RESUMO

Cholix toxin (Cholix) from Vibrio cholerae is a potent virulence factor exhibiting ADP-ribosyltransferase activity on eukaryotic elongation factor 2 (eEF2) of host cells, resulting in the inhibition of protein synthesis. Administration of Cholix or its homologue Pseudomonas exotoxin A (PEA) to mice causes lethal hepatocyte damage. In this study, we demonstrate cytotoxicity of Cholix on human hepatocytes in the presence of tumor necrosis factor α (TNF-α), which has been reported to play a fatal role in PEA administered to mice. Compared with incubating HepG2 cells with Cholix alone, co-treatment with TNF-α and Cholix (TNF-α/Cholix) significantly enhanced the activation of caspases, cytochrome c release from mitochondria into cytoplasm, and poly-ADP-ribose polymerase (PARP) cleavage, while incubation with TNF-α alone or co-treatment with TNF-α/catalytically inactive Cholix did not. In the early stage of cell death, Cholix increased phosphorylation of mitogen-activated protein kinases (e.g., p38, ERK, JNK) and Akt, which was not affected by TNF-α alone. MAPK inhibitors (SP600125, SB20852, and U0126) suppressed PARP cleavage induced by TNF-α/Cholix. Protein kinase inhibitor Go6976 suppressed JNK phosphorylation and PARP cleavage by TNF-α/Cholix. In contrast, PKC activator PMA in the absence of TNF-α promoted Cholix-induced PARP cleavage. Reactive oxygen species (ROS) inhibitor, N-acetyl cysteine (NAC), suppressed TNF-α/Cholix-induced JNK and ERK phosphorylation, resulting in inhibition of PARP cleavage. These data suggest that ROS and JNK pathways are important mediators of TNF-α/Cholix-induced HepG2 cell death.


Assuntos
Fatores de Ribosilação do ADP/toxicidade , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Animais , Apoptose/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Técnicas de Cocultura , Células Hep G2 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
5.
Toxins (Basel) ; 8(5)2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187473

RESUMO

Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPß, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.


Assuntos
Proteínas de Bactérias/toxicidade , Receptores de Superfície Celular/metabolismo , Animais , Humanos
6.
Cell Microbiol ; 18(7): 1024-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26749168

RESUMO

Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células CACO-2/efeitos dos fármacos , Células CACO-2/metabolismo , Células CACO-2/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cloroquina/farmacologia , Meios de Cultivo Condicionados/farmacologia , DNA Helicases , Chaperona BiP do Retículo Endoplasmático , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Técnicas de Inativação de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Proteína Quinase C-delta/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Escherichia coli Shiga Toxigênica/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Subtilisinas/genética , Subtilisinas/farmacologia , eIF-2 Quinase/metabolismo
7.
Infect Immun ; 84(2): 537-49, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26644384

RESUMO

Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection.


Assuntos
Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/fisiologia , Proteínas de Escherichia coli/metabolismo , Flagelos/fisiologia , Lipoproteínas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Células CACO-2 , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Lipoproteínas/genética , Transdução de Sinais/genética , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética
8.
Infect Genet Evol ; 33: 176-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25936496

RESUMO

A novel virulence gene, norV, that encodes nitric oxide (NO) reductase, was examined to investigate the emergence of enterohemorrhagic Escherichia coli (EHEC) O157 subgroup C clusters 2 and 3 from subgroup C cluster 1. Deletion of norV occurred at a point between cluster 1 and cluster 2 just after or at the same time that an stx2 bacteriophage, which retains Shiga toxin 2 gene, was inserted into wrbA, which encodes a novel multimeric flavodoxin-like protein, in EHEC O157. Sensitivity of NO to anaerobic growth was correlated with the deletion of norV in all EHEC O157 individuals tested. The C467A mutation of fimH, which encodes minor component of type 1 fimbriae, occurred within cluster 1, not as a transition from cluster 1 to cluster 2, indicating that there is a cluster 1 minority branch that leads to cluster 2. These data refine the evolutionary history of an emerging EHEC O157.


Assuntos
Escherichia coli O157/genética , Evolução Molecular , Oxirredutases/genética , Escherichia coli O157/classificação , Escherichia coli O157/metabolismo , Escherichia coli O157/virologia , Deleção de Genes , Genótipo , Mutação , Óxido Nítrico , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Virulência/genética
9.
Infect Immun ; 82(11): 4899-908, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183729

RESUMO

Autophagy and apoptosis play critical roles in cellular homeostasis and survival. Subtilase cytotoxin (SubAB), produced by non-O157 type Shiga-toxigenic Escherichia coli (STEC), is an important virulence factor in disease. SubAB, a protease, cleaves a specific site on the endoplasmic reticulum (ER) chaperone protein BiP/GRP78, leading to ER stress, and induces apoptosis. Here we report that in HeLa cells, activation of a PERK (RNA-dependent protein kinase [PKR]-like ER kinase)-eIF2α (α subunit of eukaryotic initiation factor 2)-dependent pathway by SubAB-mediated BiP cleavage negatively regulates autophagy and induces apoptosis through death-associated protein 1 (DAP1). We found that SubAB treatment decreased the amounts of autophagy markers LC3-II and p62 as well as those of mTOR (mammalian target of rapamycin) signaling proteins ULK1 and S6K. These proteins showed increased expression levels in PERK knockdown or DAP1 knockdown cells. In addition, depletion of DAP1 in HeLa cells dramatically inhibited the SubAB-stimulated apoptotic pathway: SubAB-induced Bax/Bak conformational changes, Bax/Bak oligomerization, cytochrome c release, activation of caspases, and poly(ADP-ribose) polymerase (PARP) cleavage. These results show that DAP1 is a key regulator, through PERK-eIF2α-dependent pathways, of the induction of apoptosis and reduction of autophagy by SubAB.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica/imunologia , Subtilisinas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Chaperona BiP do Retículo Endoplasmático , Escherichia coli , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Subtilisinas/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
Cell Microbiol ; 16(10): 1582-601, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24844382

RESUMO

The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non-O157 Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA-dependent protein kinase (PKR)-like ER kinase (PERK), followed by caspase-dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB-induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl-ß-cyclodextrin (mßCD) and Filipin III, but not suppressed in clathrin-, dynamin I/II-, caveolin1- and caveolin2-knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent-resistant domain (DRM) structure. Interestingly, IPA-3, an inhibitor of serine/threonine kinase p21-activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB-mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft- and actin-dependent, but not clathrin-, caveolin- and dynamin-dependent pathways as its major endocytic translocation route.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Microdomínios da Membrana/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Subtilisinas/metabolismo , Antivirais/farmacologia , Transporte Biológico , Caveolinas/genética , Linhagem Celular , Colesterol/metabolismo , Clatrina/genética , Dissulfetos/farmacologia , Dinaminas/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Filipina/farmacologia , Células HeLa , Humanos , Hidrazonas/farmacologia , Naftóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno , beta-Ciclodextrinas/farmacologia , eIF-2 Quinase/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores
11.
Nihon Saikingaku Zasshi ; 68(3): 299-311, 2013.
Artigo em Japonês | MEDLINE | ID: mdl-23985936

RESUMO

Bacterial AB5 toxins are proteins, produced by pathogenic bacteria including of Vibrio cholerae, Shigella dysenteriae, and enterohaemorrhagic Escherichia coli, which are usually released into the extracellular medium and cause disease by killing or altering the metabolism of target eukaryotic cells. The toxins are usually composed of one A subunit (a toxic domain) and five B subunits (a receptor-binding domain). This article overviews the characteristics and mode of actions of AB5 toxins including cholera toxin, Shiga-like toxin, and subtilase cytotoxin, and highlights current topics related to the roles of the effectors in promoting bacterial infection.


Assuntos
Toxina da Cólera/toxicidade , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/toxicidade , Toxinas Shiga/toxicidade , Subtilisinas/toxicidade , Vibrio cholerae/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Toxina da Cólera/antagonistas & inibidores , Toxina da Cólera/biossíntese , Toxina da Cólera/química , Surtos de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Estrutura Terciária de Proteína , Toxinas Shiga/antagonistas & inibidores , Toxinas Shiga/biossíntese , Toxinas Shiga/química , Subtilisinas/antagonistas & inibidores , Subtilisinas/biossíntese , Subtilisinas/química , Vacinas Atenuadas , Vibrio cholerae/patogenicidade
12.
Infect Immun ; 80(11): 3939-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22949549

RESUMO

Subtilase cytotoxin (SubAB), which is produced by certain strains of Shiga-toxigenic Escherichia coli (STEC), cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress and caspase-dependent apoptosis. SubAB alters the innate immune response. SubAB pretreatment of macrophages inhibited lipopolysaccharide (LPS)-induced production of both monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor α (TNF-α). We investigated here the mechanism by which SubAB inhibits nitric oxide (NO) production by mouse macrophages. SubAB suppressed LPS-induced NO production through inhibition of inducible NO synthase (iNOS) mRNA and protein expression. Further, SubAB inhibited LPS-induced IκB-α phosphorylation and nuclear localization of the nuclear factor-κB (NF-κB) p65/p50 heterodimer. Reporter gene and chromatin immunoprecipitation (ChIP) assays revealed that SubAB reduced LPS-induced NF-κB p65/p50 heterodimer binding to an NF-κB binding site on the iNOS promoter. In contrast to the native toxin, a catalytically inactivated SubAB mutant slightly enhanced LPS-induced iNOS expression and binding of NF-κB subunits to the iNOS promoter. The SubAB effect on LPS-induced iNOS expression was significantly reduced in macrophages from NF-κB1 (p50)-deficient mice, which lacked a DNA-binding subunit of the p65/p50 heterodimer, suggesting that p50 was involved in SubAB-mediated inhibition of iNOS expression. Treatment of macrophages with an NOS inhibitor or expression of SubAB by E. coli increased E. coli survival in macrophages, suggesting that NO generated by macrophages resulted in efficient killing of the bacteria and SubAB contributed to E. coli survival in macrophages. Thus, we hypothesize that SubAB might represent a novel bacterial strategy to circumvent host defense during STEC infection.


Assuntos
Proteínas de Escherichia coli/farmacologia , Escherichia coli/metabolismo , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Subtilisinas/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Immunoblotting , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
13.
J Biol Chem ; 287(37): 31104-15, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22822085

RESUMO

In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA receptor for toxin-induced autophagy in the gastric epithelial cell line AZ-521, and show that VacA internalization through binding to LRP1 regulates the autophagic process including generation of LC3-II from LC3-I, which is involved in formation of autophagosomes and autolysosomes. Knockdown of LRP1 and Atg5 inhibited generation of LC3-II as well as cleavage of PARP, a marker of apoptosis, in response to VacA, whereas caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone (Z-VAD-fmk), and necroptosis inhibitor, Necrostatin-1, did not inhibit VacA-induced autophagy, suggesting that VacA-induced autophagy via LRP1 binding precedes apoptosis. Other VacA receptors such as RPTPα, RPTPß, and fibronectin did not affect VacA-induced autophagy or apoptosis. Therefore, we propose that the cell surface receptor, LRP1, mediates VacA-induced autophagy and apoptosis.


Assuntos
Apoptose , Autofagia , Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Proteína 5 Relacionada à Autofagia , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Epitélio/metabolismo , Epitélio/microbiologia , Epitélio/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Estômago/microbiologia , Estômago/patologia
14.
Mol Microbiol ; 85(3): 492-512, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22716767

RESUMO

In enterohaemorrhagic Escherichia coli (EHEC) O157, there are two types of anaerobic nitric oxide (NO) reductase genes, an intact gene (norV) and a 204 bp deletion gene (norVs). Epidemiological analysis has revealed that norV-type EHEC are more virulent than norVs-type EHEC. Thus, to reveal the role of NO reductase during EHEC infection, we constructed isogenic norV-type and norVs-type EHEC mutant strains. Under anaerobic conditions, the norV-type EHEC was protected from NO-mediated growth inhibition, while the norVs-type EHEC mutant strain was not, suggesting that NorV of EHEC was effective in the anaerobic detoxification. We then investigated the role of NO reductase within macrophages. The norV-type EHEC produced a lower NO level within macrophages compared with the norVs-type EHEC. Moreover, the norV-type EHEC resulted in higher levels of Shiga toxin 2 (Stx2) within macrophages compared with the norVs-type EHEC. Finally, the norV-type EHEC showed a better level of survival than the norVs-type EHEC. These data suggest that the intact norV gene plays an important role for the survival of EHEC within macrophages, and is a direct virulence determinant of EHEC.


Assuntos
Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Macrófagos/microbiologia , Oxirredutases/genética , Fatores de Virulência/genética , Anaerobiose/genética , Escherichia coli O157/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Óperon/genética , Oxirredutases/metabolismo , Toxina Shiga I/biossíntese , Toxina Shiga I/genética , Fatores de Virulência/metabolismo
15.
Infect Immun ; 80(5): 1803-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354021

RESUMO

Shiga-toxigenic Escherichia coli (STEC) produces subtilase cytotoxin (SubAB), which cleaves the molecular chaperone BiP in the endoplasmic reticulum (ER), leading to an ER stress response and then activation of apoptotic signaling pathways. Here, we show that an early event in SubAB-induced apoptosis in HeLa cells is mediated by RNA-dependent protein kinase (PKR)-like ER kinase (PERK), not activating transcription factor 6 (ATF6) or inositol-requiring enzyme 1(Ire1), two other ER stress sensors. PERK knockdown suppressed SubAB-induced eIF2α phosphorylation, activating transcription factor 4 (ATF4) expression, caspase activation, and cytotoxicity. Knockdown of eIF2α by small interfering RNA (siRNA) or inhibition of eIF2α dephosphorylation by Sal003 enhanced SubAB-induced caspase activation. Treatment with proteasome inhibitors (i.e., MG132 and lactacystin), but not a general caspase inhibitor (Z-VAD) or a lysosome inhibitor (chloroquine), suppressed SubAB-induced caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage, suggesting that the ubiquitin-proteasome system controls events leading to caspase activation, i.e., Bax/Bak conformational changes, followed by cytochrome c release from mitochondria. Levels of ubiquitinated proteins in HeLa cells were significantly decreased by SubAB treatment. Further, in an early event, some antiapoptotic proteins, which normally turn over rapidly, have their synthesis inhibited, and show enhanced degradation via the proteasome, resulting in apoptosis. In PERK knockdown cells, SubAB-induced loss of ubiquitinated proteins was inhibited. Thus, SubAB-induced ER stress is caused by BiP cleavage, leading to PERK activation, not by accumulation of ubiquitinated proteins, which undergo PERK-dependent degradation via the ubiquitin-proteasome system.


Assuntos
Apoptose/fisiologia , Proteínas de Escherichia coli/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Subtilisinas/farmacologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Transdução de Sinais , eIF-2 Quinase/genética
16.
J Biol Chem ; 286(43): 37207-15, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21903588

RESUMO

Cholix toxin (Cholix) is a novel ADP-ribosylating cytotoxin produced by Vibrio cholerae, which utilizes eukaryotic elongation factor 2 as a substrate and acts by a mechanism similar to that of diphtheria toxin and Pseudomonas exotoxin A. First it was found that Cholix-treated HeLa cells exhibited caspase-dependent apoptosis, whereas intestinal cells such as Caco-2, HCT116, and RKO did not. Here we investigated Cholix-induced cell death signaling pathways in HeLa cells. Cholix-induced cytochrome c release into cytosol was initiated by specific conformational changes of pro-apoptotic Bak associated with Bax. Silencing of bak/bax genes or bak gene alone using siRNA significantly suppressed cytochrome c release and caspase-7 activation, but not activation of caspases-3 and -9. Although pretreatment with a caspase-8 inhibitor (Z-IETD-FMK) reduced Cholix-induced cytochrome c release and activation of caspases-3, -7, and -9, cytotoxicity was not decreased. Pretreatment with Z-YVAD-FMK, which inhibits caspase-1, -4, and -5, suppressed not only cytochrome c release, activation of caspase-3, -7, -8, or -9, and PARP cleavage, but also cytotoxicity, indicating that caspase-1, -4, and -5 activation is initiated at an early stage of Cholix-induced apoptosis and promotes caspase-8 activation. These results show that the inflammatory caspases (caspase-1, -4, and -5) and caspase-8 are responsible for both mitochondrial signals and other caspase activation. In conclusion, we showed that Cholix-induced caspase activation plays an essential role in generation of apoptotic signals, which are mediated by both mitochondria-dependent and -independent pathways.


Assuntos
Fatores de Ribosilação do ADP/farmacologia , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vibrio cholerae/química , Fatores de Ribosilação do ADP/química , Apoptose/genética , Toxinas Bacterianas/química , Inibidores de Caspase , Caspases/genética , Caspases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Citocromos c/genética , Citocromos c/metabolismo , Ativação Enzimática , Inativação Gênica , Células HeLa , Humanos , Oligopeptídeos/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Gene ; 478(1-2): 1-10, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262333

RESUMO

A novel chromosome-plasmid hybrid bioluminescent reporter system (C-P reporter system) utilizing Photorhabdus luminescens luxCDABE genes has been constructed to monitor the expression of Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) in enterohemorrhagic Escherichia coli (EHEC) in real time. The luxCDABE genes of P. luminescens have been cloned and divided into a luxCDAB cassette and a luxE gene. A promoter-less luxE gene introduced downstream from stx1 and from stx2 on EHEC chromosomes in single copies, and other luxCDAB genes were expressed on a multicopy number expression plasmid into the same cells. These Stx1- and Stx2-bioluminescent reporter strains expressed bioluminescence into bacteria cells when the expression of the promoter-less luxE gene was expressed in response to the promoter activity of stx1 and stx2, respectively. The expression levels of bioluminescence were identical to the production levels of Stx1 and Stx2 in the Stx1- and Stx2-bioluminescent reporter strains, and these strains produced both Stxs at the same respective levels as those of the parent EHEC strains. Using these reporter strains, we examined the profiles of Stx1 and Stx2 expression in EHEC. We found that production of both Stx1 and Stx2 in EHEC was enhanced upon contact with intestinal epithelial cells and within macrophages. However, the expression profiles between Stx1 and Stx2 in EHEC were different from each other under these conditions. Thus, these results suggested that this C-P reporter system is useful for determining the gene expression profile of bacteria.


Assuntos
Escherichia coli Êntero-Hemorrágica/genética , Genes Reporter , Proteínas Luminescentes/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Aderência Bacteriana , Células CACO-2 , Cromossomos Bacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/microbiologia , Photorhabdus/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase
18.
Microb Pathog ; 50(3-4): 159-67, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21232591

RESUMO

Subtilase cytotoxin (SubAB) is an AB(5) type toxin produced by a subset of Shiga-toxigenic Escherichia coli. The A subunit is a subtilase-like serine protease and cleaves an endoplasmic reticulum chaperone BiP. The B subunit binds to a receptor on the cell surface. Although SubAB is lethal for mice, the cause of death is not clear. In this study, we demonstrate in mice that SubAB induced small bowel hemorrhage and a coagulopathy characterized by thrombocytopenia, prolonged prothrombin time and activated partial thromboplastin time. SubAB also induced inflammatory changes in the small intestine as detected by ¹8F-fluoro-2-deoxy-d-glucose positron emission tomography imaging and histochemical analysis. Using RT-PCR and ELISA, SubAB was shown to increase interleukin-6 in a time-dependent manner. Thus, our results indicate that death in SubAB-treated mice may be associated with severe inflammatory response and hemorrhage of the small intestine, accompanied by coagulopathy and IL6 production.


Assuntos
Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/mortalidade , Proteínas de Escherichia coli/imunologia , Hemorragia/imunologia , Hemorragia/mortalidade , Escherichia coli Shiga Toxigênica/patogenicidade , Subtilisinas/imunologia , Animais , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Hemorragia/microbiologia , Humanos , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/imunologia , Subtilisinas/genética
19.
Infect Immun ; 79(2): 617-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21098100

RESUMO

Subtilase cytotoxin (SubAB), which is produced by certain strains of Shiga-toxigenic Escherichia coli (STEC), causes the 78-kDa glucose-regulated protein (GRP78/BiP) cleavage, followed by induction of endoplasmic reticulum (ER) stress, leading to caspase-dependent apoptosis via mitochondrial membrane damage by Bax/Bak activation. The purpose of the present study was to identify SubAB receptors responsible for HeLa cell death. Four proteins, NG2, α2ß1 integrin (ITG), L1 cell adhesion molecule (L1CAM), and hepatocyte growth factor receptor (Met), were identified to be SubAB-binding proteins by immunoprecipitation and purification, followed by liquid chromatography-tandem mass spectrometry analysis. SubAB-induced Bax conformational change, Bax/Bak complex formation, caspase activation, and cell death were decreased in ß1 ITG, NG2, and L1CAM small interfering RNA-transfected cells, but unexpectedly, BiP cleavage was still observed. Pretreatment of cells with a function-blocking ß1 ITG antibody (monoclonal antibody [MAb] P5D2) enhanced SubAB-induced caspase activation; MAb P5D2 alone had no effect on caspase activation. Furthermore, we found that SubAB induced focal adhesion kinase fragmentation, which was mediated by a proteasome-dependent pathway, and caspase activation was suppressed in the presence of proteasome inhibitor. Thus, ß1 ITG serves as a SubAB-binding protein and may interact with SubAB-signaling pathways, leading to cell death. Our results raise the possibility that although BiP cleavage is necessary for SubAB-induced apoptotic cell death, signaling pathways associated with functional SubAB receptors may be required for activation of SubAB-dependent apoptotic pathways.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/metabolismo , Apoptose , Chaperona BiP do Retículo Endoplasmático , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Inativação Gênica , Células HeLa , Humanos , Integrina alfa2beta1/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Subtilisinas/genética , Tapsigargina
20.
Microb Pathog ; 49(4): 153-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20561923

RESUMO

Subtilase cytotoxin (SubAB) is an AB(5) cytotoxin produced by some strains of Shiga-toxigenic Escherichia coli. The A subunit is a subtilase-like serine protease and cleaves an endoplasmic reticulum (ER) chaperone, BiP, leading to transient inhibition of protein synthesis and cell cycle arrest at G(1) phase, and inducing caspase-dependent apoptosis via mitochondrial membrane damage in Vero cells. Here we investigated the mechanism of mitochondrial permeabilization in HeLa cells. SubAB-induced cytochrome c release into cytosol did not depend on mitochondrial permeability transition pore (PTP), since cyclosporine A did not suppress cytochrome c release. SubAB did not change the expression of anti-apoptotic Bcl-2 or Bcl-XL and pro-apoptotic Bax or Bak, but triggered Bax and Bak conformational changes and association of Bax with Bak. Silencing using siRNA of both bax and bak genes, but not bax, bak, or bim alone, resulted in reduction of cytochrome c release, caspase-3 activation, DNA ladder formation and cytotoxicity, indicating that Bax and Bak were involved in apoptosis. SubAB activated ER transmembrane transducers, Ire1alpha, and cJun N-terminal kinase (JNK), and induced C/EBF-homologue protein (CHOP). To investigate whether these signals were involved in cytochrome c release by Bax activation, we silenced ire1alpha, jnk or chop; however, silencing did not decrease SubAB-induced cytochrome c release, suggesting that these signals were not necessary for SubAB-induced mitochondrial permeabilization by Bax activation.


Assuntos
Apoptose , Proteínas de Escherichia coli/toxicidade , Escherichia coli/patogenicidade , Membranas Mitocondriais/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Subtilisinas/toxicidade , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Citoplasma/química , Endorribonucleases/metabolismo , Inativação Gênica , Células HeLa , Humanos , MAP Quinase Quinase 4/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...