RESUMO
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (ß), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential.
Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação , América do Norte , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , FilogeniaRESUMO
Many studies have been conducted to explore outbreaks of SARS-CoV-2 in farmed mink and their intra-/inter-species spread and spillover to provide data to the scientific community, protecting human and animal health. Studies report anthropozoonotic introduction, which was initially documented in April 2020 in the Netherlands, and subsequent inter-/intra-species spread of SARS-CoV-2 in farmed mink, likely due to SARS-CoV-2 host tropism capable of establishing efficient interactions with host ACE2 and the mink hosts' ability to enhance swift viral transmission due to their density, housing status, and occupational contacts. Despite the rigorous prevention and control measures adopted, transmission of the virus within and between animal species was efficient, resulting in the development of mink-associated strains able to jump back and forth among the mink hosts and other animal/human contacts. Current knowledge recognizes the mink as a highly susceptible animal host harboring the virus with or without clinical manifestations, furthering infection transmission as a hidden animal reservoir. A One Health approach is, thus, recommended in SARS-CoV-2 surveillance and monitoring on mink farms and of their susceptible contact animals to identify and better understand these potential animal hosts.
Assuntos
COVID-19 , Viroses , Animais , Humanos , Vison , SARS-CoV-2 , Fazendas , COVID-19/epidemiologia , COVID-19/veterinária , Surtos de Doenças/veterináriaRESUMO
Influenza A virus transmission between pigs and humans has been reported periodically worldwide, and spillover events across the animal-human species barrier could lead to the next influenza pandemic. Swine exhibitions serve as a unique interface conducive to zoonotic disease transmission due to extensive commingling of pigs and humans for prolonged periods of time. The majority of zoonotic influenza A virus transmission in the United States has been linked to swine exhibitions, leading some to suggest additional controls for influenza A virus at the swine-human interface. Determining the value of the exhibition swine industry and gauging the financial impacts influenza A virus outbreaks could have on society, helps to inform adoption decisions of mitigation recommendations. This study estimates the total value of the exhibition swine industry in the United States and calculates the predicted costs of the most extreme mitigation strategy, cancelling swine exhibitions to reduce zoonotic influenza A virus transmission. Mixed methods, including a survey, were used to collect data and inform the study model. We estimated that the direct economic impact of the exhibition swine sector in 2018 was $1.2 billion. If pig shows were to be cancelled for one year, the estimated direct economic impact would be $357.1 million. A permanent, > 3-year ban on swine exhibitions would result in a $665 million economic impact, which is a 45% reduction from baseline. The direct economic impact of cancelling the swine show circuit could not be determined, as youth exhibitors may pursue alternative activities that cannot be precisely accounted for. However, the estimated loss to the swine industry justifies seeking enhanced mitigation to prevent disease transmission. Moreover, economic losses secondary to exhibition cancellations may explain hesitancy to participate in active influenza A virus surveillance efforts.
Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Estados Unidos/epidemiologia , Humanos , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Zoonoses/prevenção & controle , RecompensaRESUMO
AIMS: Swine are a mixing vessel for the emergence of novel reassortant influenza A viruses (IAV). Interspecies transmission of swine-origin IAV poses a public health and pandemic risk. In the United States, the majority of zoonotic IAV transmission events have occurred in association with swine exposure at agricultural fairs. Accordingly, this human-animal interface necessitates mitigation strategies informed by understanding of interspecies transmission mechanisms in exhibition swine. Likewise, the diversity of IAV in swine can be a source for novel reassortant or mutated viruses that pose a risk to both swine and human health. METHODS AND RESULTS: In an effort to better understand those risks, here we investigated the epidemiology of IAV in exhibition swine and subsequent transmission to humans by performing phylogenetic analyses using full genome sequences from 272 IAV isolates collected from exhibition swine and 23 A(H3N2)v viruses from human hosts during 2013-2015. Sixty-seven fairs (24.2%) had at least one pig test positive for IAV with an overall estimated prevalence of 8.9% (95% CI: 8.3-9.6, Clopper-Pearson). Of the 19 genotypes found in swine, 5 were also identified in humans. There was a positive correlation between the number of human cases of a genotype and its prevalence in exhibition swine. Additionally, we demonstrated that A(H3N2)v viruses clustered tightly with exhibition swine viruses that were prevalent in the same year. CONCLUSIONS: These data indicate that multiple genotypes of swine-lineage IAV have infected humans, and highly prevalent IAV genotypes in exhibition swine during a given year are also the strains detected most frequently in human cases of variant IAV. Continued surveillance and rapid characterization of IAVs in exhibition swine can facilitate timely phenotypic evaluation and matching of candidate vaccine strains to those viruses present at the human-animal interface which are most likely to spillover into humans.
Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Animais , Suínos , Estados Unidos/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genéticaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in humans in late 2019 and spread rapidly, becoming a global pandemic. A zoonotic spillover event from animal to human was identified as the presumed origin. Subsequently, reports began emerging regarding spillback events resulting in SARS-CoV-2 infections in multiple animal species. These events highlighted critical links between animal and human health while also raising concerns about the development of new reservoir hosts and potential viral mutations that could alter the virulence and transmission or evade immune responses. Characterizing susceptibility, prevalence, and transmission between animal species became a priority to help protect animal and human health. In this study, we coalesced a large team of investigators and community partners to surveil for SARS-CoV-2 in domestic and free-ranging animals around Ohio between May 2020 and August 2021. We focused on species with known or predicted susceptibility to SARS-CoV-2 infection, highly congregated or medically compromised animals (e.g., shelters, barns, veterinary hospitals), and animals that had frequent contact with humans (e.g., pets, agricultural animals, zoo animals, or animals in wildlife hospitals). This included free-ranging deer (n = 76 individuals), free-ranging mink (n = 57), multiple species of bats (n = 59), and other wildlife in addition to domestic cats (n = 275) and pigs (n = 184). In total, we tested 792 individual animals (34 species) via rRT-PCR for SARS-CoV-2 RNA. SARS-CoV-2 viral RNA was not detected in any of the tested animals despite a major peak in human SARS-CoV-2 cases that occurred in Ohio subsequent to the peak of animal samplings. Importantly, we did not test for SARS-CoV-2 antibodies in this study, which limited our ability to assess exposure. While the results of this study were negative, the surveillance effort was critical and remains key to understanding, predicting, and preventing the re-emergence of SARS-CoV-2 in humans or animals.
RESUMO
The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética , COVID-19/veterinária , Teorema de Bayes , Pandemias , FilogeniaRESUMO
While SARS-CoV-2 has sporadically infected a wide range of animal species worldwide1, the virus has been repeatedly and frequently detected in white-tailed deer in North America2â"7. The zoonotic origins of this pandemic virus highlight the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, which disseminated across hundreds of kilometers. We discovered that alpha and delta variants evolved in white-tailed deer at three-times the rate observed in humans. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only faster in white-tailed deer but driven by different mutational biases and selection pressures. White-tailed deer are not just short-term recipients of human viral diversity but serve as reservoirs for alpha and other variants to evolve in new directions after going extinct in humans. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal model experiments using viruses isolated from white-tailed deer. Still, SARS-CoV-2 viruses have transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
RESUMO
Reducing zoonotic influenza A virus (IAV) risk in the United States necessitates mitigation of IAV in exhibition swine. We evaluated the effectiveness of shortening swine exhibitions to <72 hours to reduce IAV risk. We longitudinally sampled every pig daily for the full duration of 16 county fairs during 2014-2015 (39,768 nasal wipes from 6,768 pigs). In addition, we estimated IAV prevalence at 195 fairs during 2018-2019 to test the hypothesis that <72-hour swine exhibitions would have lower IAV prevalence. In both studies, we found that shortening duration drastically reduces IAV prevalence in exhibition swine at county fairs. Reduction of viral load in the barn within a county fair is critical to reduce the risk for interspecies IAV transmission and pandemic potential. Therefore, we encourage fair organizers to shorten swine shows to protect the health of both animals and humans.
Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Nariz , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Prevalência , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Estados UnidosRESUMO
Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.
Assuntos
Vírus da Influenza A , Influenza Aviária , Migração Animal , Animais , Animais Selvagens , Patos , Humanos , Influenza Aviária/epidemiologia , Prevalência , Estados Unidos/epidemiologiaRESUMO
Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.
Assuntos
Animais Selvagens/virologia , COVID-19/veterinária , Cervos/virologia , Filogenia , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Evolução Molecular , Humanos , Masculino , Ohio/epidemiologia , Saúde Única/tendências , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses Virais/epidemiologiaRESUMO
Influenza A viruses (IAV) in swine (IAV-S) pose serious risk to public health through spillover at the human-animal interface. Continued zoonotic transmission increases the likelihood novel IAV-S capable of causing the next influenza pandemic will emerge from this animal reservoir. Because current mitigation strategies are insufficient to prevent IAV zoonosis, we investigated the ability of swine vaccination to decrease IAV-S zoonotic transmission risk. We assessed postchallenge viral shedding in market-age swine vaccinated with either live-attenuated influenza virus (LAIV), killed influenza virus (KV), or sham vaccine (NV). We also assessed postchallenge transmission by exposing naive ferrets to pigs with contact types reflective of those experienced by humans in a field setting. LAIV and KV swine groups exhibited a nearly 100-fold reduction in peak nasal titer (LAIV mean, 4.55 log 50% tissue culture infectious dose [TCID50]/ml; KV mean, 4.53 log TCID50/ml) compared to NV swine (mean, 6.40 log TCID50/ml). Air sampling during the postchallenge period revealed decreased cumulative IAV in LAIV and KV study room air (LAIV, area under the concentration-time curve [AUC] of 57.55; KV, AUC = 24.29) compared to the NV study room (AUC = 86.92). Pairwise survival analysis revealed a significant delay in onset of infection among ferrets exposed to LAIV pigs versus NV pigs (rate ratio, 0.66; P = 0.028). Ferrets exposed to vaccinated pigs had lower cumulative virus titers in nasal wash samples (LAIV versus NV, P < 0.0001; KV versus NV, P= 0.3490) and experienced reduced clinical signs during infection. Our findings support the implementation of preexhibition influenza vaccination of swine to reduce the public health risk posed by IAV-S at agricultural exhibitions. IMPORTANCE Swine exhibited at agricultural fairs in North America have been the source of repeated zoonotic influenza A virus transmission, which creates a pathway for influenza pandemic emergence. We investigated the effect of using either live-attenuated influenza virus or killed influenza virus vaccines as prefair influenza vaccination of swine on zoonotic influenza transmission risk. Ferrets were exposed to the pigs in order to simulate human exposure in a field setting. We observed reductions in influenza A virus shedding in both groups of vaccinated pigs as well as the corresponding ferret exposure groups, indicating vaccination improved outcomes on both sides of the interface. There was also significant delay in onset of infection among ferrets that were exposed to live-attenuated virus-vaccinated pigs, which might be beneficial during longer fairs. Our findings indicate that policies mandating influenza vaccination of swine before fairs, while not currently common, would reduce the public health risk posed by influenza zoonosis.
RESUMO
Calf gastrointestinal disease remains one of the main causes of productivity and economic losses on dairy operations. The majority of pre-weaned calf mortality is attributed to diarrhea or other digestive problems. Five enteric pathogens are commonly associated with diarrhea in dairy calves, including bovine rotavirus, bovine coronavirus, Escherichia coli, Salmonella spp., and Cryptosporidium parvum. Pathogen-associated differences in health outcomes and case fatality rates have not been well-characterized. Additionally, updated prevalence estimates may reflect important changes in the epidemiology of the pathogens on dairy farms. For this cohort study, fecal samples were collected from 276 clinically ill calves across 5 central Ohio dairy farms on the first day of diarrheal diagnosis. Genomic techniques, including reverse transcription polymerase chain reaction (RT-PCR) and droplet digital polymerase chain reaction (ddPCR) were used to test for the presence of the five enteric pathogens. A Poisson regression model was used to estimate the relative risk of mortality, and a survival analysis with a Cox regression model was used to analyze time to return to a healthy clinical status by pathogen. Rotavirus was the most frequently identified at 68.1 % (188/276), followed by F5 (K99)+E. coli at 42.5 % (114/268), C. parvum at 28.4 % (66/232), coronavirus at 5.8 % (16/276), and Salmonella had the lowest prevalence at 3.7 % (10/268). Risk of mortality tended to be higher for calves infected with Salmonella (RR = 3.83; 95 %CI: 0.93, 16.02, p = 0.062); however, the time to return to a healthy clinical status was not different for different pathogens. Only farm was a significant predictor of time to return to health (p = 0.017); the within-farm median duration of signs substantially varied between 2 and 7 days. The results suggest that the prevalence and distribution of rotaviral infections is higher than reported in prior studies. With the exception of infections caused by Salmonella spp., pathogen diagnosis on the first day of diarrhea was a poor predictor of the outcome and duration of disease. These results are critical to guide the implementation of prevention measures to detect, treat, and prevent calf diarrhea.
Assuntos
Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Diarreia/veterinária , Animais , Animais Recém-Nascidos , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino/isolamento & purificação , Criptosporidiose/epidemiologia , Cryptosporidium parvum/isolamento & purificação , Indústria de Laticínios , Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/virologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Estudos Longitudinais , Ohio/epidemiologia , Prevalência , Rotavirus/isolamento & purificação , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Salmonella/isolamento & purificação , Salmonelose Animal/epidemiologia , Resultado do Tratamento , DesmameRESUMO
BACKGROUND: Since 2011, influenza A viruses circulating in US swine exhibited at county fairs are associated with >460 zoonotic infections, presenting an ongoing pandemic risk. Swine "jackpot shows" that occur before county fairs each summer intermix large numbers of exhibition swine from diverse geographic locations. We investigated the role of jackpot shows in influenza zoonoses. METHODS: We collected snout wipe or nasal swab samples from 17 009 pigs attending 350 national, state, and local swine exhibitions across 8 states during 2016-2018. RESULTS: Influenza was detected in 13.9% of swine sampled at jackpot shows, and 76.3% of jackpot shows had at least 1 pig test positive. Jackpot shows had 4.3-fold higher odds of detecting at least 1 influenza-positive pig compared to county fairs. When influenza was detected at a county fair, almost half of pigs tested positive, clarifying why zoonotic infections occur primarily at county fairs. CONCLUSIONS: The earlier timing of jackpot shows and long-distance travel for repeated showing of individual pigs provide a pathway for the introduction of influenza into county fairs. Mitigation strategies aimed at curtailing influenza at jackpot shows are likely to have downstream effects on disease transmission at county fairs and zoonoses.
Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Suínos , Doenças dos Suínos/epidemiologia , Zoonoses/epidemiologiaRESUMO
Influenza A Viruses (IAV) in domestic swine (IAV-S) are associated with sporadic zoonotic transmission at the human-animal interface. Previous pandemic IAVs originated from animals, which emphasizes the importance of characterizing human immunity against the increasingly diverse IAV-S. We analyzed serum samples from healthy human donors (n = 153) using hemagglutination-inhibition (HAI) assay to assess existing serologic protection against a panel of contemporary IAV-S isolated from swine in the United States (n = 11). Age-specific seroprotection rates (SPR), which are the proportion of individuals with HAI ≥ 1:40, corresponded with lower or moderate pandemic risk classifications for the multiple IAV-S examined (one H1-δ1, one H1-δ2, three H3-IVA, one H3-IVB, one H3-IVF). Individuals born between 2004 and 2013 had SPRs of 0% for the five classified H3 subtype IAV-S, indicating youth may be particularly predisposed to infection with these viruses. Expansion of existing immunologic gaps over time could increase likelihood of future IAV-S spillover to humans and facilitate subsequent sustained human-to-human transmission resulting in disease outbreaks with pandemic potential.
Assuntos
Vírus da Influenza A/imunologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Adulto , Idoso , Animais , Feminino , Humanos , Vírus da Influenza A/classificação , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Estações do Ano , Testes Sorológicos , Suínos , Doenças dos Suínos/virologia , Estados Unidos/epidemiologiaRESUMO
Wild birds are considered the natural reservoir of influenza A viruses (IAVs) making them critical for IAV surveillance efforts. While sea ducks have played a role in novel IAV emergence events that threatened food security and public health, very few surveillance samples have been collected from sea duck hosts. From 2014-2018, we conducted surveillance focused in the Mississippi flyway, USA at locations where sea duck harvest has been relatively successful compared to our other sampling locations. Our surveillance yielded 1662 samples from sea ducks, from which we recovered 77 IAV isolates. Our analyses identified persistence of sea duck specific IAV lineages across multiple years. We also recovered sea duck origin IAVs containing an H4 gene highly divergent from the majority of North American H4-HA with clade node age of over 65 years. Identification of IAVs with long branch lengths is indicative of substantial genomic change consistent with persistence without detection by surveillance efforts. Sea ducks play a role in the movement and long-term persistence of IAVs and are likely harboring more undetected IAV diversity. Sea ducks should be a point of emphasis for future North American wild bird IAV surveillance efforts.
Assuntos
Patos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Animais , Animais Selvagens/virologia , Genômica , Especificidade de Hospedeiro , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Filogenia , Aves Domésticas , Estados Unidos/epidemiologiaRESUMO
Duck hunting preserves (DHP) have resident populations of farm-raised mallard ducks, which create potential foci for the evolution of novel influenza A viruses (IAVs). Through an eleven-year (2003-2013) IAV surveillance project in seven DHPs in Maryland, USA, we frequently identified IAVs in the resident, free-flying mallard ducks (5.8% of cloacal samples were IAV-positive). The IAV population had high genetic diversity, including 12 HA subtypes and 9 NA subtypes. By sequencing the complete genomes of 290 viruses, we determined that genetically diverse IAVs were introduced annually into DHP ducks, predominantly from wild birds in the Anatidae family that inhabit the Atlantic and Mississippi flyways. The relatively low viral gene flow observed out of DHPs suggests that raised mallards do not sustain long-term viral persistence nor do they serve as important sources of new viruses in wild birds. Overall, our findings indicate that DHPs offer reliable samples of the diversity of IAV subtypes, and could serve as regional sentinel sites that mimic the viral diversity found in local wild duck populations, which would provide a cost-efficient strategy for long-term IAV monitoring. Such monitoring could allow for early identification and characterization of viruses that threaten bird species of high economic and environmental interest.
RESUMO
Influenza pandemics are associated with severe morbidity, mortality, and social and economic disruption. Every summer in the United States, youths attending agricultural fairs are exposed to genetically diverse influenza A viruses (IAVs) circulating in exhibition swine, resulting in over 450 lab-confirmed zoonotic infections since 2010. Exhibition swine represent a small, defined population (â¼1.5% of the U.S. herd), presenting a realistic opportunity to mitigate a pandemic threat by reducing IAV transmission in the animals themselves. Through intensive surveillance and genetic sequencing of IAVs in exhibition swine in six U.S. states in 2018 (n = 212), we characterized how a heterogeneous circuit of swine shows, comprising fairs with different sizes and geographic coverage, facilitates IAV transmission among exhibition swine and into humans. Specifically, we identified the role of an early-season national show in the propagation and spatial dissemination of a specific virus (H1δ-2) that becomes dominant among exhibition swine and is associated with the majority of zoonotic infections in 2018. These findings suggest that a highly targeted mitigation strategy, such as postponing swine shows for 1 to 2 weeks following the early-season national show, could potentially reduce IAV transmission in exhibition swine and spillover into humans, and this merits further study.IMPORTANCE The varying influenza A virus (IAV) exposure and infection status of individual swine facilitates introduction, transmission, and dissemination of diverse IAVs. Since agricultural fairs bring people into intimate contact with swine, they provide a unique interface for zoonotic transmission of IAV. Understanding the dynamics of IAV transmission through exhibition swine is critical to mitigating the high incidence of variant IAV cases reported in association with agricultural fairs. We used genomic sequences from our exhibition swine surveillance to characterize the hemagglutinin and full genotypic diversity of IAV at early-season shows and the subsequent dissemination through later-season agricultural fairs. We were able to identify a critical time point with important implications for downstream IAV and zoonotic transmission. With improved understanding of evolutionary origins of zoonotic IAV, we can inform public health mitigation strategies to ultimately reduce zoonotic IAV transmission and risk of pandemic IAV emergence.
Assuntos
Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Animais , Evolução Molecular , Variação Genética , Genótipo , Humanos , Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/epidemiologia , Filogenia , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos/epidemiologia , Zoonoses/virologiaRESUMO
Wild aquatic birds maintain a large, genetically diverse pool of influenza A viruses (IAVs), which can be transmitted to lower mammals and, ultimately, humans. Through phenotypic analyses of viral replication efficiency, only a small set of avian IAVs were found to replicate well in epithelial cells of the swine upper respiratory tract, and these viruses were shown to infect and cause virus shedding in pigs. Such a phenotypic trait of the viral replication efficiency appears to emerge randomly and is distributed among IAVs across multiple avian species and geographic and temporal orders. It is not determined by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. This study demonstrates that phenotypic variants of viral replication efficiency exist among avian IAVs but that only a few of these may result in viral shedding in pigs upon infection, providing opportunities for these viruses to become adapted to pigs, thus posing a higher potential risk for creating novel variants or detrimental reassortants within pig populations.IMPORTANCE Swine serve as a mixing vessel for generating pandemic strains of human influenza virus. All hemagglutinin subtypes of IAVs can infect swine; however, only sporadic cases of infection with avian IAVs are reported in domestic swine. The molecular mechanisms affecting the ability of avian IAVs to infect swine are still not fully understood. From the findings of phenotypic analyses, this study suggests that the tissue tropisms (i.e., in swine upper respiratory tracts) of avian IAVs affect their spillovers from wild birds to pigs. It was found that this phenotype is determined not by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. In addition, our results show that such a phenotypic trait was sporadically and randomly distributed among IAVs across multiple avian species and geographic and temporal orders. This study suggests an efficient way for assessment of the risk posed by avian IAVs, such as in evaluating their potentials to be transmitted from birds to pigs.
Assuntos
Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Tropismo , Animais , Linhagem Celular , Células Epiteliais/virologia , Células HEK293 , Hemaglutininas , Humanos , Vírus da Influenza A/crescimento & desenvolvimento , Pandemias , Filogenia , Sistema Respiratório/virologia , Suínos , Replicação Viral , Eliminação de Partículas ViraisRESUMO
Rapid transmission and spread of infectious pathogens are enhanced by the agricultural fair environment, where large numbers of livestock and people from numerous backgrounds congregate for several days. The transmission of influenza A virus and zoonotic enteric pathogens to fairgoers is a considerable risk and has occurred several times over the past decade. In an effort to mitigate zoonotic disease transmission in these settings, public health guidelines and recommendations including hand sanitation stations have been implemented. While hand hygiene recommendations to prevent the spread of zoonotic disease are well communicated, it is hypothesized that the adoption of these recommendations by agricultural fairs and fairgoers is low. To test this hypothesis, hand hygiene data collected from 658 agricultural fairs between 2012 and 2019 was analyzed to determine frequency and function of hand sanitation stations at the fairs, as well as utilization of educational signage. In addition, an observational study was performed to calculate the proportion of fairgoers who use hand sanitation stations at the fair. Lastly, samples were taken from working hand sanitation stations present at the exits of livestock barns and tested for the presence of influenza A virus and antimicrobial resistant coliform bacteria. Hand sanitation stations were present at most fairs (77.4 %) as recommended, but only 142 out of 2021 (7.0 %) visitors were observed using the stations. Health risk signage was displayed at more than half of fairs while the proper wash procedure was displayed at less than half. No influenza A virus was detected on any of the hand sanitation stations, however antimicrobial resistant coliform bacteria were recovered from 75.5 % of the sampled hand sanitation stations. Fairs should employ educational material along with functional hand sanitation stations in order to promote hand hygiene at fairs. Stations should be maintained and cleaned often to ensure effectiveness, as hand hygiene continues to be recommended to fairgoers when exiting animal barns to reduce zoonotic disease transmission.