Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202311100, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37770409

RESUMO

The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.

2.
ACS Meas Sci Au ; 3(1): 32-44, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36817012

RESUMO

Neutral triacylglyceride (TG) lipids are critical in cellular function, signaling, and energy storage. Multiple molecular pathways control TG structure via nonselective routes making them structurally complex and analytically challenging to characterize. The presence of C=C bond positional isomers exacerbates this challenge as complete structural elucidation is not possible by conventional tandem mass spectrometric methods such as collision-induced dissociation (CID), alone. Herein, we report a custom-made coaxial contained-electrospray ionization (ESI) emitter that allows the fusion of plasma discharge with charged microdroplets during electrospray (ES). Etched capillaries were incorporated into this contained-ES emitter, facilitating the generation of reactive oxygen species (ROS) at low (3 kV) ESI voltages and allowing stable ESI ion signal to be achieved at an unprecedented high (7 kV) spray voltage. The analytical utility of inducing plasma discharge during electrospray was investigated using online ionization of neutral TGs, in situ epoxidation of unsaturation sites, and C=C bond localization via conventional CID mass spectrometry. Collisional activation of the lipid epoxide generated during the online plasma-droplet fusion experiment resulted in a novel fragmentation pattern that showed a quadruplet of diagnostic ions for confident assignment of C=C bond positions and subsequent isomer differentiation. This phenomenon enabled the identification of a novel TG lipid, composed of conjugated linoleic acid, that is isomeric with two other TG lipids naturally found in extra virgin olive oil. To validate our findings, we analyzed various standards of TG lipids, including triolein, trilinolein, and trilinolenin, and isomeric mixtures in the positive-ion mode, each of which produced the expected quadruplet diagnostic fragment ions. Further validation was obtained by analyzing standards of free fatty acids expected from the hydrolysis of the TG lipids in the negative-ion mode, together with isomeric mixtures. The chemistry governing the gas-phase fragmentation of the lipid epoxides was carefully elucidated for each TG lipid analyzed. This comprehensive shotgun lipidomic approach has the potential to impact biomedical research since it can be accomplished on readily available mass spectrometers without the need for instrument modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...