Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 293: 121982, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640555

RESUMO

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Assuntos
Hepatócitos , Oligopeptídeos , Humanos , Colforsina/metabolismo , Colforsina/farmacologia , Diferenciação Celular , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Hidrogéis/química
2.
ACS Biomater Sci Eng ; 7(9): 4293-4304, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34151570

RESUMO

Synthetic hydrogels formed from poly(ethylene glycol) (PEG) are widely used to study how cells interact with their extracellular matrix. These in vivo-like 3D environments provide a basis for tissue engineering and cell therapies but also for research into fundamental biological questions and disease modeling. The physical properties of PEG hydrogels can be modulated to provide mechanical cues to encapsulated cells; however, the impact of changing hydrogel stiffness on the diffusivity of solutes to and from encapsulated cells has received only limited attention. This is particularly true in selectively cross-linked "tetra-PEG" hydrogels, whose design limits network inhomogeneities. Here, we used a combination of theoretical calculations, predictive modeling, and experimental measurements of hydrogel swelling, rheological behavior, and diffusion kinetics to characterize tetra-PEG hydrogels' permissiveness to the diffusion of molecules of biologically relevant size as we changed polymer concentration, and thus hydrogel mechanical strength. Our models predict that hydrogel mesh size has little effect on the diffusivity of model molecules and instead predicts that diffusion rates are more highly dependent on solute size. Indeed, our model predicts that changes in hydrogel mesh size only begin to have a non-negligible impact on the concentration of a solute that diffuses out of hydrogels for the smallest mesh sizes and largest diffusing solutes. Experimental measurements characterizing the diffusion of fluorescein isothiocyanate (FITC)-labeled dextran molecules of known size aligned well with modeling predictions and suggest that doubling the polymer concentration from 2.5% (w/v) to 5% produces stiffer gels with faster gelling kinetics without affecting the diffusivity of solutes of biologically relevant size but that 10% hydrogels can slow their diffusion. Our findings provide confidence that the stiffness of tetra-PEG hydrogels can be modulated over a physiological range without significantly impacting the transport rates of solutes to and from encapsulated cells.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Difusão , Polietilenoglicóis , Engenharia Tecidual
3.
Nat Protoc ; 16(5): 2418-2449, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854255

RESUMO

Growing interest in exploring mechanically mediated biological phenomena has resulted in cell culture substrates and 3D matrices with variable stiffnesses becoming standard tools in biology labs. However, correlating stiffness with biological outcomes and comparing results between research groups is hampered by variability in the methods used to determine Young's (elastic) modulus, E, and by the inaccessibility of relevant mechanical engineering protocols to most biology labs. Here, we describe a protocol for measuring E of soft 2D surfaces and 3D hydrogels using atomic force microscopy (AFM) force spectroscopy. We provide instructions for preparing hydrogels with and without encapsulated live cells, and provide a method for mounting samples within the AFM. We also provide details on how to calibrate the instrument, and give step-by-step instructions for collecting force-displacement curves in both manual and automatic modes (stiffness mapping). We then provide details on how to apply either the Hertz or the Oliver-Pharr model to calculate E, and give additional instructions to aid the user in plotting data distributions and carrying out statistical analyses. We also provide instructions for inferring differential matrix remodeling activity in hydrogels containing encapsulated single cells or organoids. Our protocol is suitable for probing a range of synthetic and naturally derived polymeric hydrogels such as polyethylene glycol, polyacrylamide, hyaluronic acid, collagen, or Matrigel. Although sample preparation timings will vary, a user with introductory training to AFM will be able to use this protocol to characterize the mechanical properties of two to six soft surfaces or 3D hydrogels in a single day.


Assuntos
Técnicas de Cultura de Células , Módulo de Elasticidade , Hidrogéis/química , Microscopia de Força Atômica , Linhagem Celular , Propriedades de Superfície
4.
Nat Mater ; 20(2): 250-259, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32895507

RESUMO

Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor ß1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.


Assuntos
Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Organoides/metabolismo , Animais , Feminino , Humanos , Mucosa Intestinal/citologia , Linfócitos/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Organoides/citologia , Fator de Crescimento Transformador beta1/metabolismo
5.
ACS Appl Mater Interfaces ; 12(42): 47355-47367, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33027591

RESUMO

The recent rise of adoptive T cell therapy (ATCT) as a promising cancer immunotherapy has triggered increased interest in therapeutic T cell bioprocessing. T cell activation is a critical processing step and is known to be modulated by physical parameters, such as substrate stiffness. Nevertheless, relatively little is known about how biophysical factors regulate immune cells, such as T cells. Understanding how T cell activation is modulated by physical and biochemical cues may offer novel methods to control cell behavior for therapeutic cell processing. Inspired by T cell mechanosensitivity, we developed a multiwell, reusable, customizable, two-dimensional (2D) polyacrylamide (PA) hydrogel-integrated culture device to study the physicochemical stimulation of Jurkat T cells. Substrate stiffness and ligand density were tuned by concentrations of the hydrogel cross-linker and antibody in the coating solution, respectively. We cultured Jurkat T cells on 2D hydrogels of different stiffnesses that presented surface-immobilized stimulatory antibodies against CD3 and CD28 and demonstrated that Jurkat T cells stimulated by stiff hydrogels (50.6 ± 15.1 kPa) exhibited significantly higher interleukin-2 (IL-2) secretion, but lower proliferation, than those stimulated by softer hydrogels (7.1 ± 0.4 kPa). In addition, we found that increasing anti-CD3 concentration from 10 to 30 µg/mL led to a significant increase in IL-2 secretion from cells stimulated on 7.1 ± 0.4 and 9.3 ± 2.4 kPa gels. Simultaneous tuning of substrate stiffness and stimulatory ligand density showed that the two parameters synergize (two-way ANOVA interaction effect: p < 0.001) to enhance IL-2 secretion. Our results demonstrate the importance of physical parameters in immune cell stimulation and highlight the potential of designing future immunostimulatory biomaterials that are mechanically tailored to balance stimulatory strength and downstream proliferative capacity of therapeutic T cells.


Assuntos
Resinas Acrílicas/química , Técnicas de Cultura de Células , Hidrogéis/química , Linfócitos T/imunologia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Humanos , Células Jurkat , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
6.
Acta Biomater ; 89: 73-83, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844569

RESUMO

Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-ß1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-ß may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-ß3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.


Assuntos
Resinas Acrílicas , Diferenciação Celular , Condrogênese , Hidrogéis , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Hipóxia Celular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Estresse Mecânico , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
7.
Adv Healthc Mater ; 7(8): e1700939, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29316363

RESUMO

Regenerative medicine aims to tackle a panoply of challenges from repairing focal damage to articular cartilage to preventing pathological tissue remodeling after myocardial infarction. Hydrogels are water-swollen networks formed from synthetic or naturally derived polymers and are emerging as important tools to address these challenges. Recent advances in hydrogel chemistries are enabling researchers to create hydrogels that can act as 3D ex vivo tissue models, allowing them to explore fundamental questions in cell biology by replicating tissues' dynamic and nonlinear physical properties. Enabled by cutting edge techniques such as 3D bioprinting, cell-laden hydrogels are also being developed with highly controlled tissue-specific architectures, vasculature, and biological functions that together can direct tissue repair. Moreover, advanced in situ forming and acellular hydrogels are increasingly finding use as delivery vehicles for bioactive compounds and in mediating host cell response. Here, advances in the design and fabrication of hydrogels for regenerative medicine are reviewed. It is also addressed how controlled chemistries are allowing for precise engineering of spatial and time-dependent properties in hydrogels with a look to how these materials will eventually translate to clinical applications.


Assuntos
Bioimpressão/métodos , Hidrogéis/uso terapêutico , Impressão Tridimensional , Medicina Regenerativa/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...