Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39258988

RESUMO

Pegasus-III is an ultralow aspect ratio spherical tokamak providing a dedicated US experiment for comparative solenoid-free startup studies. A new magnetic diagnostic suite for equilibrium and low frequency (<200 kHz) magnetohydrodynamic mode analysis has been installed. These new diagnostics address the significant challenges of measuring magnetic field in a high noise environment with the majority constrained to fit in an 8 mm diagnostic gap on the high field side. Electrostatic switching noise generated by the 16 independent current feedback-controlled power supplies produces dVcm/dt ∼ 1 kV/µs and volt level common mode noise on the magnetics. Immunity to this switching noise is accomplished through differential signal runs and signal processing, along with end-to-end electromagnetic interference shielding. The magnetic measurements are simultaneously digitized at 1 MHz and conditioned by precision 8 pole Butterworth filters with a corner frequency of 200 kHz to prevent aliasing down to the 16-bit level over the full passband. Ex-vessel calibrations of the Bp coils were completed with a typical uncertainty of <0.5%. Stray toroidal field pickup from coil misalignment or positioning errors is corrected using a physics-based model. Comparisons of the corrected measurements to modeling agree to within 1.3% on average. This is within the 1.5% measurement uncertainty that a sensitivity analysis determined is needed for accurate fast boundary and equilibrium reconstruction.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133087

RESUMO

A suite of diagnostics used to assess impurity content and dynamics has been updated, upgraded, and installed on the Pegasus-III Experiment. Typical plasma parameters during local helicity injection start-up are τshot ∼ 10 ms, ne ∼ 1 × 1019 m-3, and Te ∼ 50 eV. The deployed diagnostics are compatible with this modest temperature and density regime and provide species identification, source localization, and estimation of radiation losses. Impurity species are determined by recording time-evolving, single line-of-sight spectra at 1.25 kfps using a SPRED (Survey, Poor Resolution, Extended Domain) vacuum ultraviolet spectrometer. SPRED is equipped with 450 g/mm grating, giving a spectral resolution of 0.33 nm and a spectral range from ∼10 to 110 nm, useful to identify light impurity species in this temperature and density range. An absolutely calibrated spectrometer that collects light from the plasma at Rtan = 15.9 cm and Δt ≥ 2 ms is used as a visible survey spectrometer and for continuum measurements. The radiated power from the plasma is estimated with a photodiode-based diagnostic. Two 16-channel absolute extreme ultraviolet diode arrays are placed behind pinhole apertures, resulting in 32 lines of sight at Z = 0, with a spatial resolution of 2-3 cm and a time response of 60 kHz. A photometrically calibrated collinear Dα/near infrared filtered photodiode-based system measures the Dα emission and around 1040 nm. All these instruments have been designed to suppress electromagnetic interference from megawatt-class switching power supplies.

3.
Rev Sci Instrum ; 93(10): 103523, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319386

RESUMO

In this study, we present the design of a new charge exchange recombination spectroscopy (CXRS) system for Wendelstein 7-X (W7-X), which aims at measuring line radiation from highly ionized iron impurities after laser blow off injections over transport timescales. New fiber bundles with a core diameter of 600 µm have been added to one of the existing optical systems at W7-X used for CXRS. The fibers direct collected light to five newly developed single channel high frame rate F/2.8 spectrometers. The new custom-made spectrometers are built using entirely off-the-shelf and 3D printed components, and employ a round-to-linear fiber bundle, instead of an entrance slit, to maximize light throughput. The detector is an ultra-low readout noise EM-CCD camera capable of frame rates of up to 10 000 fps for about 500 consecutive frames when operated using a single readout channel. Such high frame rates will enable the study of inward convection of injected impurities. An initial sensitivity study is performed using a newly developed Markov chain Monte Carlo approach based on the pySTRAHL impurity transport code. This study indicates that, with the addition of the new CX diagnostic, impurity convection velocities can be inferred.

4.
Phys Rev Lett ; 128(10): 105001, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333092

RESUMO

Magnetic measurements during dc helicity injection tokamak startup indicate Alfvénic turbulence in the injected current streams mediates magnetic relaxation and results in macroscopic plasma current drive. Localization of such activity to the injected current streams, a bias voltage dependence to its onset, and higher-order spectral analysis indicate super-Alfvénic electrons excite instabilities that drive the observed turbulence. Measured fluctuation helicity is consistent with an α-dynamo electromotive force driving net current comparable to the macroscopic equilibrium current density. These results imply new constraints for scaling local helicity injection to larger devices.

5.
Rev Sci Instrum ; 92(6): 063520, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243585

RESUMO

A NASA-built x-ray microcalorimeter spectrometer has been installed on the MST facility at the Wisconsin Plasma Physics Laboratory and has recorded x-ray photons emitted by impurity ions of aluminum in a majority deuterium plasma. Much of the x-ray microcalorimeter development has been driven by the needs of astrophysics missions, where imaging arrays with few-eV spectral resolution are required. The goal of our project is to adapt these single-photon-counting microcalorimeters for magnetic fusion energy research and demonstrate the value of such measurements for fusion science. Microcalorimeter spectrometers combine the best characteristics of the x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and the broadband coverage of an x-ray pulse height analysis system. Fusion experiments are increasingly employing high-Z plasma-facing components and require measurement of the concentration of all impurity ion species in the plasma. This diagnostic has the capability to satisfy this need for multi-species impurity ion data and will also contribute to measurements of impurity ion temperature and flow velocity, Zeff, and electron density. Here, we introduce x-ray microcalorimeter detectors and discuss the diagnostic capability for magnetic fusion energy experiments. We describe our experimental setup and spectrometer operation approach at MST, and we present the results from an initial measurement campaign.

6.
Rev Sci Instrum ; 90(6): 063502, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255047

RESUMO

We have developed a low-cost spectrometer with simple optical design that achieves unprecedented precision measurements of ion temperature (±0.01 eV) and velocity (±20 m/s). A Fabry-Pérot étalon provides the simultaneous high resolving power and high throughput needed for the light levels available in singly ionized helium and argon plasmas. Reducing the systematic uncertainty in the absolute wavelength calibration needed for the specified velocity precision motivates a Bayesian analysis method called Nested Sampling to address the nontrivial uncertainty in the diffraction order. An initial emission measurement of a singly charged stationary argon plasma yields a temperature of 0.339 ± 0.007 eV and a velocity of -3 ± 4 m/s with a systematic uncertainty of 20 m/s.

7.
Phys Rev Lett ; 122(10): 105001, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932630

RESUMO

Zonal flow appears in toroidal, magnetically confined plasmas as part of the self-regulated interaction of turbulence and transport processes. For toroidal plasmas having a strong toroidal magnetic field, the zonal flow is predominately poloidally directed. This Letter reports the first observation of a zonal flow that is toroidally directed. The measurements are made just inside the last closed flux surface of reversed field pinch plasmas that have a dominant poloidal magnetic field. A limit cycle oscillation between the strength of the zonal flow and the amplitude of plasma potential fluctuations is observed, which provides evidence for the self-regulation characteristic of drift-wave-type plasma turbulence. The measurements help advance understanding and gyrokinetic modeling of toroidal plasmas in the pursuit of fusion energy.

8.
Rev Sci Instrum ; 89(10): 10K103, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399657

RESUMO

The analysis approach called integrated data analysis (IDA) provides a means to exploit all information present in multiple streams of raw data to produce the best inference of a plasma parameter. This contrasts with the typical approach in which information (data) from a single diagnostic is used to measure a given parameter, e.g., visible bremsstrahlung → Z eff. Data from a given diagnostic usually contain information on many parameters. For example, a Thomson scattering diagnostic is sensitive to bremsstrahlung and line emission in addition to electron temperature. This background light is typically subtracted off and discarded but could be used to improve knowledge of Z eff. IDA encourages explicit awareness of such information and provides the quantitative framework to exploit it. This gives IDA the ability to increase spatial and temporal resolution, increase precision and accuracy of inferences, and measure plasma parameters that are difficult or impossible to measure using single diagnostic techniques. One example is the measurement of Z eff on Madison symmetric torus using IDA since no single diagnostic can provide a robust measurement. As we enter the burning plasma era, application of IDA will be critical to the measurement of certain parameters, as diagnostic access in the harsh fusion environment will be extremely limited.

9.
Phys Rev Lett ; 121(16): 165002, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387678

RESUMO

The first direct measurements of an impurity particle flux driven by drift-wave turbulence in a toroidal magnetized plasma are reported. The correlation between the impurity density and radial velocity fluctuations is measured using ion Doppler spectroscopy. The small, very fast radial velocity fluctuation is resolved with the aid of a new linearized spectrum correlation analysis method that rejects uncorrelated noise as the sample size increases. The measured C^{2+} turbulent impurity flux in the edge of the plasma is directed inward and is consistent with impurity density measurements. This is also the first direct evidence for fluctuation-induced transport due to trapped-electron-mode turbulence in reversed field pinch plasmas.

10.
Rev Sci Instrum ; 88(8): 083513, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863643

RESUMO

A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

11.
Rev Sci Instrum ; 87(11): 11E509, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910359

RESUMO

An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

12.
Rev Sci Instrum ; 87(11): 11E543, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910452

RESUMO

A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened Hß emission and the spectrum of Doppler-shifted Hα emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

13.
Rev Sci Instrum ; 87(11): 11E530, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910690

RESUMO

The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.

14.
Phys Rev Lett ; 109(11): 115003, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005639

RESUMO

Alfvénic modes are observed due to neutral beam injection for the first time in a reversed field pinch plasma. Modeling of the beam deposition and slowing down shows that the velocity and radial localization are high. This allows instability drive from inverse Landau damping of a bump-on-tail in the parallel distribution function or from free energy in the fast ion density gradient. Mode switching from a lower frequency toroidal mode number n=5 mode that scales with beam injection velocity to a higher frequency n=4 mode with Alfvénic scaling is observed.

15.
Phys Rev Lett ; 106(25): 254502, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770646

RESUMO

Three-wave turbulent interactions and the role of eddy size on the turbulent electromotive force are studied in a spherical liquid-sodium dynamo experiment. A symmetric, equatorial baffle reduces the amplitude of the largest-scale turbulent eddies, which is inferred from the magnetic fluctuations spectrum (measured by a 2D array of surface probes). Differential rotation in the mean flow is >2 times more effective in generating mean toroidal magnetic fields from the applied poloidal field (via the Ω effect) when the largest-scale eddies are eliminated, thus demonstrating that the global turbulent resistivity (the ß effect from the largest-scale eddies) is reduced by a similar amount.

16.
Phys Rev Lett ; 104(7): 074501, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366890

RESUMO

The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

17.
Rev Sci Instrum ; 79(9): 094501, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044438

RESUMO

We present an experiment designed to study magnetohydrodynamic effects in free surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

18.
Rev Sci Instrum ; 79(5): 056107, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18513100

RESUMO

GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications.

19.
Phys Rev Lett ; 98(16): 164503, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501423

RESUMO

The nature of Ohm's law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is also measured in an identical-scale water model of the experiment. These two fields are used to determine the terms in Ohm's law, indicating the presence of currents driven by a turbulent electromotive force. These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of the field induced by the sodium's mean flow.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 2): 026303, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358418

RESUMO

The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...