Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895459

RESUMO

Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.

2.
Alzheimers Dement ; 19(12): 5970-5987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768001

RESUMO

INTRODUCTION: Experimental models are essential tools in neurodegenerative disease research. However, the translation of insights and drugs discovered in model systems has proven immensely challenging, marred by high failure rates in human clinical trials. METHODS: Here we review the application of artificial intelligence (AI) and machine learning (ML) in experimental medicine for dementia research. RESULTS: Considering the specific challenges of reproducibility and translation between other species or model systems and human biology in preclinical dementia research, we highlight best practices and resources that can be leveraged to quantify and evaluate translatability. We then evaluate how AI and ML approaches could be applied to enhance both cross-model reproducibility and translation to human biology, while sustaining biological interpretability. DISCUSSION: AI and ML approaches in experimental medicine remain in their infancy. However, they have great potential to strengthen preclinical research and translation if based upon adequate, robust, and reproducible experimental data. HIGHLIGHTS: There are increasing applications of AI in experimental medicine. We identified issues in reproducibility, cross-species translation, and data curation in the field. Our review highlights data resources and AI approaches as solutions. Multi-omics analysis with AI offers exciting future possibilities in drug discovery.


Assuntos
Demência , Doenças Neurodegenerativas , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Aprendizado de Máquina
3.
Front Immunol ; 14: 1168539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359515

RESUMO

Microglia, the macrophages of the brain, are vital for brain homeostasis and have been implicated in a broad range of brain disorders. Neuroinflammation has gained traction as a possible therapeutic target for neurodegeneration, however, the precise function of microglia in specific neurodegenerative disorders is an ongoing area of research. Genetic studies offer valuable insights into understanding causality, rather than merely observing a correlation. Genome-wide association studies (GWAS) have identified many genetic loci that are linked to susceptibility to neurodegenerative disorders. (Post)-GWAS studies have determined that microglia likely play an important role in the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The process of understanding how individual GWAS risk loci affect microglia function and mediate susceptibility is complex. A rapidly growing number of publications with genomic datasets and computational tools have formulated new hypotheses that guide the biological interpretation of AD and PD genetic risk. In this review, we discuss the key concepts and challenges in the post-GWAS interpretation of AD and PD GWAS risk alleles. Post-GWAS challenges include the identification of target cell (sub)type(s), causal variants, and target genes. Crucially, the prediction of GWAS-identified disease-risk cell types, variants and genes require validation and functional testing to understand the biological consequences within the pathology of the disorders. Many AD and PD risk genes are highly pleiotropic and perform multiple important functions that might not be equally relevant for the mechanisms by which GWAS risk alleles exert their effect(s). Ultimately, many GWAS risk alleles exert their effect by changing microglia function, thereby altering the pathophysiology of these disorders, and hence, we believe that modelling this context is crucial for a deepened understanding of these disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas/genética
4.
Elife ; 112022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904330

RESUMO

Human cerebral organoids are unique in their development of progenitor-rich zones akin to ventricular zones from which neuronal progenitors differentiate and migrate radially. Analyses of cerebral organoids thus far have been performed in sectioned tissue or in superficial layers due to their high scattering properties. Here, we demonstrate label-free three-photon imaging of whole, uncleared intact organoids (~2 mm depth) to assess early events of early human brain development. Optimizing a custom-made three-photon microscope to image intact cerebral organoids generated from Rett Syndrome patients, we show defects in the ventricular zone volumetric structure of mutant organoids compared to isogenic control organoids. Long-term imaging live organoids reveals that shorter migration distances and slower migration speeds of mutant radially migrating neurons are associated with more tortuous trajectories. Our label-free imaging system constitutes a particularly useful platform for tracking normal and abnormal development in individual organoids, as well as for screening therapeutic molecules via intact organoid imaging.


Assuntos
Organoides , Síndrome de Rett , Encéfalo/diagnóstico por imagem , Humanos , Neurônios , Organoides/fisiologia , Síndrome de Rett/diagnóstico por imagem , Síndrome de Rett/genética
5.
Nature ; 604(7907): 689-696, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444276

RESUMO

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Assuntos
Células Clonais , Mosaicismo , Neocórtex , Linhagem da Célula , Células Cultivadas , Humanos , Microglia , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento
6.
Nat Protoc ; 16(3): 1629-1646, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495627

RESUMO

We present a nuclei isolation protocol for genomic and epigenomic interrogation of multiple cell type populations in the human and rodent brain. The nuclei isolation protocol allows cell type-specific profiling of neurons, microglia, oligodendrocytes, and astrocytes, being compatible with fresh and frozen samples obtained from either resected or postmortem brain tissue. This 2-day procedure consists of tissue homogenization with fixation, nuclei extraction, and antibody staining followed by fluorescence-activated nuclei sorting (FANS) and does not require specialized skillsets. Cell type-specific nuclei populations can be used for downstream omic-scale sequencing applications with an emphasis on epigenomic interrogation such as histone modifications, transcription factor binding, chromatin accessibility, and chromosome architecture. The nuclei isolation protocol enables translational examination of archived healthy and diseased brain specimens through utilization of existing medical biorepositories.


Assuntos
Núcleo Celular/química , Citometria de Fluxo/métodos , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Química Encefálica/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Epigenômica/métodos , Genômica/métodos , Humanos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia
7.
Mol Syst Biol ; 16(12): e9819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33289969

RESUMO

Alzheimer's disease (AD) is characterized by the appearance of amyloid-ß plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK-p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec-F which was upregulated on a subset of reactive microglia. The human paralog Siglec-8 was also upregulated on microglia in AD. Siglec-F and Siglec-8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV-2 cell line and human stem cell-derived microglia models. Siglec-F overexpression activates an endocytic and pyroptotic inflammatory response in BV-2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV-2 cells. Collectively, our results point to an important role for mouse Siglec-F and human Siglec-8 in regulating microglial activation during neurodegeneration.


Assuntos
Inflamação/patologia , Microglia/metabolismo , Degeneração Neural/patologia , Fosfoproteínas/metabolismo , Proteômica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Morte Celular , Linhagem Celular , Humanos , Inflamação/metabolismo , Interferon gama/metabolismo , Camundongos Transgênicos , Microglia/patologia , Degeneração Neural/metabolismo , Peptídeos/metabolismo , Fagocitose , Fosfotirosina/metabolismo , Proteoma/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Transdução de Sinais , Regulação para Cima
8.
Nat Commun ; 11(1): 2484, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424276

RESUMO

DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimer's disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Dano ao DNA , DNA Glicosilases/metabolismo , Histona Desacetilase 1/metabolismo , Estresse Oxidativo , Acetilação , Envelhecimento/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Sequência de Bases , Benzofenonas/farmacologia , Cognição/efeitos dos fármacos , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ontologia Genética , Guanina/análogos & derivados , Guanina/metabolismo , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/genética
9.
Science ; 366(6469): 1134-1139, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31727856

RESUMO

Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Elementos Facilitadores Genéticos/genética , Variação Genética , Microglia/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Deleção de Sequência
10.
Immunity ; 51(4): 655-670.e8, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31587991

RESUMO

Tissue environment plays a powerful role in establishing and maintaining the distinct phenotypes of resident macrophages, but the underlying molecular mechanisms remain poorly understood. Here, we characterized transcriptomic and epigenetic changes in repopulating liver macrophages following acute Kupffer cell depletion as a means to infer signaling pathways and transcription factors that promote Kupffer cell differentiation. We obtained evidence that combinatorial interactions of the Notch ligand DLL4 and transforming growth factor-b (TGF-ß) family ligands produced by sinusoidal endothelial cells and endogenous LXR ligands were required for the induction and maintenance of Kupffer cell identity. DLL4 regulation of the Notch transcriptional effector RBPJ activated poised enhancers to rapidly induce LXRα and other Kupffer cell lineage-determining factors. These factors in turn reprogrammed the repopulating liver macrophage enhancer landscape to converge on that of the original resident Kupffer cells. Collectively, these findings provide a framework for understanding how macrophage progenitor cells acquire tissue-specific phenotypes.


Assuntos
Células de Kupffer/fisiologia , Fígado/metabolismo , Macrófagos/fisiologia , Células Mieloides/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Reprogramação Celular , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/citologia , Receptores X do Fígado/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
11.
Nature ; 556(7701): 312-313, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29662132
12.
Cell Rep ; 17(6): 1683-1698, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806305

RESUMO

Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Montagem e Desmontagem da Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Subunidades Proteicas/metabolismo , Animais , Ciclo Celular , Movimento Celular , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Microcefalia/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas/genética
13.
Nat Neurosci ; 19(11): 1477-1488, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694995

RESUMO

De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.


Assuntos
Transtorno do Espectro Autista/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurogênese , Transcrição Gênica , Via de Sinalização Wnt/genética , Animais , Divisão Celular/genética , Feminino , Camundongos , Células-Tronco Neurais/metabolismo
14.
Nat Neurosci ; 19(11): 1497-1505, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27428650

RESUMO

Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). The RTT missense MECP2R306C mutation prevents MeCP2 from interacting with the NCoR/histone deacetylase 3 (HDAC3) complex; however, the neuronal function of HDAC3 is incompletely understood. We found that neuronal deletion of Hdac3 in mice elicited abnormal locomotor coordination, sociability and cognition. Transcriptional and chromatin profiling revealed that HDAC3 positively regulated a subset of genes and was recruited to active gene promoters via MeCP2. HDAC3-associated promoters were enriched for the FOXO transcription factors, and FOXO acetylation was elevated in Hdac3 knockout (KO) and Mecp2 KO neurons. Human RTT-patient-derived MECP2R306C neural progenitor cells had deficits in HDAC3 and FOXO recruitment and gene expression. Gene editing of MECP2R306C cells to generate isogenic controls rescued HDAC3-FOXO-mediated impairments in gene expression. Our data suggest that HDAC3 interaction with MeCP2 positively regulates a subset of neuronal genes through FOXO deacetylation, and disruption of HDAC3 contributes to cognitive and social impairment.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Comportamento Social , Animais , Humanos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Síndrome de Rett/genética
15.
Proc Natl Acad Sci U S A ; 113(15): 4152-7, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035958

RESUMO

Protein S-nitrosation (SNO-protein), the nitric oxide-mediated posttranslational modification of cysteine thiols, is an important regulatory mechanism of protein function in both physiological and pathological pathways. A key first step toward elucidating the mechanism by which S-nitrosation modulates a protein's function is identification of the targeted cysteine residues. Here, we present a strategy for the simultaneous identification of SNO-cysteine sites and their cognate proteins to profile the brain of the CK-p25-inducible mouse model of Alzheimer's disease-like neurodegeneration. The approach-SNOTRAP (SNO trapping by triaryl phosphine)-is a direct tagging strategy that uses phosphine-based chemical probes, allowing enrichment of SNO-peptides and their identification by liquid chromatography tandem mass spectrometry. SNOTRAP identified 313 endogenous SNO-sites in 251 proteins in the mouse brain, of which 135 SNO-proteins were detected only during neurodegeneration. S-nitrosation in the brain shows regional differences and becomes elevated during early stages of neurodegeneration in the CK-p25 mouse. The SNO-proteome during early neurodegeneration identified increased S-nitrosation of proteins important for synapse function, metabolism, and Alzheimer's disease pathology. In the latter case, proteins related to amyloid precursor protein processing and secretion are S-nitrosated, correlating with increased amyloid formation. Sequence analysis of SNO-cysteine sites identified potential linear motifs that are altered under pathological conditions. Collectively, SNOTRAP is a direct tagging tool for global elucidation of the SNO-proteome, providing functional insights of endogenous SNO proteins in the brain and its dysregulation during neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Nitrosação , Proteínas/química
16.
Cell ; 161(7): 1592-605, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26052046

RESUMO

Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.


Assuntos
Quebras de DNA de Cadeia Dupla , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC , DNA Topoisomerases Tipo II/análise , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Etoposídeo/farmacologia , Regulação da Expressão Gênica , Genes fos , Estudo de Associação Genômica Ampla , Camundongos , Proteínas Repressoras/metabolismo , Transcriptoma/efeitos dos fármacos
17.
Neuroepigenetics ; 1: 34-40, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25705589

RESUMO

An experience-dependent postnatal increase in GABAergic inhibition in the visual cortex is important for the closure of a critical period of enhanced synaptic plasticity. Although maturation of the subclass of Parvalbumin (Pv)-expressing GABAergic interneurons is known to contribute to critical period closure, the role of epigenetics on cortical inhibition and synaptic plasticity has not been explored. The transcription regulator, histone deacetylase 2 (HDAC2), has been shown to modulate synaptic plasticity and learning processes in hippocampal excitatory neurons. We found that genetic deletion of HDAC2 specifically from Pv-interneurons reduces inhibitory input in the visual cortex of adult mice, and coincides with enhanced long-term depression (LTD) that is more typical of young mice. These findings show that HDAC2 loss in Pv-interneurons leads to a delayed closure of the critical period in the visual cortex and supports the hypothesis that HDAC2 is a key negative regulator of synaptic plasticity in the adult brain.

19.
Proc Natl Acad Sci U S A ; 110(8): 3113-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23359715

RESUMO

Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development. Bead-array analysis performed in the developing cortex revealed that brahma (Brm), a subunit of the ATP-dependent chromatin-remodeling complex BRG/brahma-associated factor, is one of the genes regulated by S-nitrosylation of HDAC2. In the cortex, expression of a mutant form of HDAC2 that cannot be nitrosylated dramatically inhibits Brm expression. Our study identifies NO and HDAC2 nitrosylation as part of a signaling pathway that regulates cortical development and the expression of Brm in neurons.


Assuntos
Movimento Celular , Montagem e Desmontagem da Cromatina , Histona Desacetilase 2/metabolismo , Neurônios/citologia , Óxido Nítrico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Separação Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Eletroporação , Feminino , Citometria de Fluxo , Camundongos , Gravidez , Transdução de Sinais
20.
Cell Cycle ; 8(5): 725-30, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19221483

RESUMO

Epigenetic changes of chromatin are increasingly recognized as key modifications that dictate the differentiation state of cells during development. Within the central nervous system, extracellular cues induce chromatin remodelling events that are essential for neuronal progenitor proliferation, cell differentiation and, later, plasticity. In this review, we discuss recent studies that show how extracellular and intranuclear signals influence chromatin remodelling and neuron-specific gene expression. The gaseous molecule Nitric Oxide (NO) has recently emerged as a new key player that mediates the epigenetic changes associated with cell cycle arrest and differentiation in neurons. Histone deacetylases (HDACs) are the first identified intranuclear targets of NO, but, due to its highly diffusible nature, it is likely that many other nuclear factors are directly regulated by NO.


Assuntos
Epigênese Genética , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Neurônios/enzimologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...