RESUMO
Carcharodontosaurids were gigantic terrestrial dinosaurs and top predators of dinosaur faunas in Gondwanan landmasses during the "Mid"-Cretaceous Period. Despite their wide geographical and stratigraphical distribution, essential parts of their anatomy are still poorly known. The present contribution aims to describe a new partial skeleton of the carcharodontosaurid Taurovenator violantei, which was previously known only by an isolated postorbital bone coming from Cenomanian-Turonian beds of northern Patagonia, Argentina. The neck of Taurovenator is composed of notably high anterior cervicals, bearing neural spines with expanded, flange-like dorsal tips which are successively imbricated. This condition has been reported previously in the carcharodontosaurid Acrocanthosaurus, but its occurrence in Taurovenator and other members of the clade suggests it may represent a synapomorphy of this theropod family. This unique neck morphology was probably related to strong modifications in musculature and restriction in the range of movements within the neck, but not with the head. The new specimen also affords valuable anatomical information on the forelimb of Patagonian carcharodontosaurids. As in other giganotosaurines, Taurovenator shows strongly reduced forelimbs, particularly the forearm, showing hand elements with elongated non-ungual phalanges, and well-marked articular surfaces and muscular insertions, suggesting highly movable digits. This new specimen of Taurovenator allows us to expand anatomical and morpho-functional discussions about the carcharodontosaurid clade.
Assuntos
Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis/anatomia & histologia , ArgentinaRESUMO
Anurans are characterized by a biphasic life cycle, with an aquatic larval (tadpole) stage followed by an adult (frog) stage, both connected through the metamorphic period in which drastic morphological and physiological changes occur1. Extant tadpoles exhibit great morphological diversity and ecological relevance2, but their absence in the pre-Cretaceous fossil record (older than 145 million years) makes their origins and early evolution enigmatic. This contrasts with the postmetamorphic anuran fossil record that dates back to the Early Jurassic and with closely related species in the Late Triassic (around 217-213 million years ago (Ma))3. Here we report a late-stage tadpole of the stem-anuran Notobatrachus degiustoi from the Middle Jurassic of Patagonia (around 168-161 Ma). This finding has dual importance because it represents the oldest-known tadpole and, to our knowledge, the first stem-anuran larva. Its exquisite preservation, including soft tissues, shows features associated with the filter-feeding mechanism characteristic of extant tadpoles4,5. Notably, both N. degiustoi tadpole and adult reached a large size, demonstrating that tadpole gigantism occurred among stem-anurans. This new discovery reveals that a biphasic life cycle, with filter-feeding tadpoles inhabiting aquatic ephemeral environments, was already present in the early evolutionary history of stem-anurans and has remained stable for at least 161 million years.
RESUMO
We present the pelvic and hindlimb musculature of the abelisaurid Skorpiovenator bustingorryi, constituting the most comprehensive muscle reconstruction to date in ceratosaur theropods. Using extant phylogenetic bracket method, we reconstructed 39 muscles that can commonly found in extant archosaurs. Through the identification of bone correlates, we recognized thigh and hindlimb muscles including knee extensors, m. iliofibularis, m. flexor tibialis externus, mm. caudofemorales, mm. puboischiofemorales, and crus muscles important in foot extension and flexion (e.g., m. tibialis anterior, mm. gastrocnemii). Also, autopodial intrinsic muscles were reconstructed whose function involve extension (m. extensor digiti 2-4), flexion (mm. flexor digitorum brevis superficialis), interdigital adduction (m. interosseus dorsalis) and abduction (m. interosseous plantaris, m. abductor 4). Abelisaurids like Skorpiovenator show a deep pre- and postacetabular blade of the ilia and enlarged cnemial crests, which would have helped increasing the moment arm of muscles related to hip flexion and hindlimb extension. Also, pedal muscles related to pronation were probably present but reduced (e.g., m. pronator profundus). Despite some gross differences in the autopodial morphology in extant outgroups (e.g., crocodilian metatarsus and avian tarsometatarsus), the present study allows us to hypothesize several pedal muscles in Skorpiovenator. These muscles would not be arranged in tendinous bundles as in Neornithes, but rather the condition would be similar to that of crocodilians with several layers formed by fleshy bellies on the plantar and dorsal aspects of the metatarsus. The musculature of Skorpiovenator is key for future studies concerning abelisaurid biomechanics, including the integration of functional morphology and ichnological data.
RESUMO
Gondwanan dinosaur faunae during the 20 Myr preceding the Cretaceous-Palaeogene (K/Pg) extinction included several lineages that were absent or poorly represented in Laurasian landmasses. Among these, the South American fossil record contains diverse abelisaurids, arguably the most successful groups of carnivorous dinosaurs from Gondwana in the Cretaceous, reaching their highest diversity towards the end of this period. Here we describe Koleken inakayali gen. et sp. n., a new abelisaurid from the La Colonia Formation (Maastrichtian, Upper Cretaceous) of Patagonia. Koleken inakayali is known from several skull bones, an almost complete dorsal series, complete sacrum, several caudal vertebrae, pelvic girdle and almost complete hind limbs. The new abelisaurid shows a unique set of features in the skull and several anatomical differences from Carnotaurus sastrei (the only other abelisaurid known from the La Colonia Formation). Koleken inakayali is retrieved as a brachyrostran abelisaurid, clustered with other South American abelisaurids from the latest Cretaceous (Campanian-Maastrichtian), such as Aucasaurus, Niebla and Carnotaurus. Leveraging our phylogeny estimates, we explore rates of morphological evolution across ceratosaurian lineages, finding them to be particularly high for elaphrosaurine noasaurids and around the base of Abelisauridae, before the Early Cretaceous radiation of the latter clade. The Noasauridae and their sister clade show contrasting patterns of morphological evolution, with noasaurids undergoing an early phase of accelerated evolution of the axial and hind limb skeleton in the Jurassic, and the abelisaurids exhibiting sustained high rates of cranial evolution during the Early Cretaceous. These results provide much needed context for the evolutionary dynamics of ceratosaurian theropods, contributing to broader understanding of macroevolutionary patterns across dinosaurs.
Assuntos
Evolução Biológica , Dinossauros , Fósseis , Filogenia , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Crânio/anatomia & histologia , ArgentinaRESUMO
Theria represent an extant clade that comprises placental and marsupial mammals. Here we report on the discovery of a new Late Cretaceous mammal from southern Patagonia, Patagomaia chainko gen. et sp. nov., represented by hindlimb and pelvic elements with unambiguous therian features. We estimate Patagomaia chainko attained a body mass of 14 kg, which is considerably greater than the 5 kg maximum body mass of coeval Laurasian therians. This new discovery demonstrates that Gondwanan therian mammals acquired large body size by the Late Cretaceous, preceding their Laurasian relatives, which remained small-bodied until the beginning of the Cenozoic. Patagomaia supports the view that the Southern Hemisphere was a cradle for the evolution of modern mammalian clades, alongside non-therian extinct groups such as meridiolestidans, gondwanatherians and monotremes.
Assuntos
Marsupiais , Monotremados , Feminino , Gravidez , Animais , Evolução Biológica , Filogenia , Fósseis , Placenta , Mamíferos , América do SulRESUMO
Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.
Assuntos
Dinossauros , Lagartos , Animais , Filogenia , Fósseis , Evolução Biológica , Extremidade Inferior/anatomia & histologia , Dinossauros/anatomia & histologia , Marcha , Lagartos/anatomia & histologia , PosturaRESUMO
The Gondwana formations exposed in the Pranhita-Godavari Valley of central India include Middle Triassic to Lower Jurassic continental deposits that provide essential information about the tetrapod assemblages of that time, documenting some of the oldest known dinosaurs and the first faunas numerically dominated by this group. The Upper Maleri Formation of the Pranhita-Godavari Basin preserves an early-middle Norian dinosaur assemblage that provides information about the early evolutionary history of this group in central-south Gondwana. This assemblage comprises sauropodomorph dinosaurs and an herrerasaurian, including two nominal species. Here, we describe in detail the anatomy of one of those early dinosaurs, the bagualosaurian sauropodomorph Jaklapallisaurus asymmetricus. The new anatomical information is used to investigate the position of the species in an updated quantitative phylogenetic analysis focused on early sauropodomorphs. The analysis recovered Jaklapallisaurus asymmetricus as a member of Unaysauridae, at the base of Plateosauria, together with Macrocollum itaquii and Unaysaurus tolentinoi from the early Norian of southern Brazil. This phylogenetic result indicates that the dispersal of early plateosaurian sauropodomorphs between the Southern Hemisphere and what nowadays is Europe would have occurred shortly after Ischigualastian times because of the extension of their ghost lineage. Thus, the presence of early plateosaurians in the early Norian of South America and India reduces a previously inferred diachrony between the biogeographic dispersals of theropods and sauropodomorphs during post-Ischigualastian times.
Assuntos
Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Osteologia , Fósseis , Evolução Biológica , BrasilRESUMO
Insect faunas from the latest Cretaceous are poorly known worldwide. Particularly, in the Southern Hemisphere, there is a gap regarding insect assemblages in the Campanian-Maastrichtian interval. Here we present an insect assemblage from the Maastrichtian Chorrillo Formation, southern Argentina, represented by well-preserved and non-deformed, chitinous microscopic remains including head capsules, wings and scales. Identified clades include Chironomidae dipterans, Coelolepida lepidopterans, and Ephemeroptera. The assemblage taxonomically resembles those of Cenozoic age, rather than other Mesozoic assemblages, in being composed by diverse chironomids and lepidopterans. To the best of our knowledge, present discovery constitutes the first insect body fossils for the Maastrichtian in the Southern Hemisphere, thus filling the gap between well-known Early Cretaceous entomofaunas and those of Paleogene age. The presented evidence shows that modern clades of chironomids were already dominant and diversified by the end of the Cretaceous, in concert with the parallel radiation of aquatic angiosperms which became dominant in freshwater habitats. This exceptional finding encourages the active search of microscopic remains of fossil arthropods in other geological units, which could provide a unique way of enhancing our knowledge on the past diversity of the clade.
Assuntos
Artrópodes , Evolução Biológica , Magnoliopsida , Animais , Ecossistema , Fósseis , Insetos , ArgentinaRESUMO
Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.
Assuntos
Dinossauros , Filogenia , Répteis , Animais , Bico/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Répteis/anatomia & histologia , Répteis/classificação , Crânio/anatomia & histologia , Fósseis , EsqueletoRESUMO
Monotremata is a clade of egg-lying mammals, represented by the living platypus and echidnas, which is endemic to Australia, and adjacent islands. Occurrence of basal monotremes in the Early Cretaceous of Australia has led to the consensus that this clade originated on that continent, arriving later to South America. Here we report on the discovery of a Late Cretaceous monotreme from southern Argentina, demonstrating that monotremes were present in circumpolar regions by the end of the Mesozoic, and that their distinctive anatomical features were probably present in these ancient forms as well.
Assuntos
Monotremados , Ornitorrinco , Tachyglossidae , Animais , Mamíferos , América do SulRESUMO
Megaraptora is a group of enigmatic, carnivorous non-avian theropod dinosaurs from the Cretaceous of Asia, Australia, and especially South America. Perhaps the most striking aspect of megaraptoran morphology is the large, robustly constructed forelimb that, in derived members of the clade, terminates in a greatly enlarged manus with hypertrophied, raptorial unguals on the medialmost two digits and a substantially smaller ungual on digit III. The unique forelimb anatomy of megaraptorans was presumably associated with distinctive functional specializations; nevertheless, its paleobiological significance has not been extensively explored. Here we draw from observations of the pectoral girdle and forelimb skeletons of Megaraptora and myological assessments of other archosaurian taxa to provide a comprehensive reconstruction of the musculature of this anatomical region in these singular theropods. Many muscle attachment sites on megaraptoran forelimb bones are remarkably well developed, which in turn suggests that the muscles themselves were functionally significant and important to the paleobiology of these theropods. Furthermore, many of these attachments became increasingly pronounced through megaraptoran evolutionary history, being substantially better developed in derived taxa such as Australovenator wintonensis and especially Megaraptor namunhuaiquii than in early branching forms such as Fukuiraptor kitadaniensis. When considered alongside previous range of motion hypotheses for Australovenator, our results indicate that megaraptorans possessed a morphologically and functionally specialized forelimb that was capable of complex movements. Notable among these were extensive extension and flexion, particularly in the highly derived manus, as well as enhanced humeral protraction, attributes that very probably aided in prey capture.
Assuntos
Dinossauros , Sistema Musculoesquelético , Animais , Dinossauros/anatomia & histologia , Extremidade Superior/anatomia & histologia , Evolução Biológica , Membro Anterior/anatomia & histologia , Sistema Musculoesquelético/anatomia & histologia , FósseisRESUMO
The Greater Rhea (Rhea americana, Rheidae) is a flightless paleognath with a wide geographical distribution in South America. The morphology of its shoulder girdle and wings are different from those of flying birds and some characteristics are similar to basal birds and paravian theropods. We present a detailed osteological, myological, and functional study of the shoulder and the wing of the Greater Rhea. Particular features of the anatomy of the pectoral girdle and wing of Rhea include the lack of triosseal canal, reduced origin area of the mm. pectoralis p. thoracica and supracoracoideus and the lack of a propatagium. The wing muscle mass is markedly reduced, reaching only 0.89% of total body mass (BM). Forelimb muscles mass values are low compared to those of flying birds and are congruent with the non-use of wings for active locomotion movements. R. americana does not flap the wings dorso-ventral as typical for flying birds, but predominantly in cranio-caudal direction, following a craniolateral to caudomedial abduction-adduction arc. When the wings are fully abducted, they are inverted L-shaped, with the inner surface caudally faced, and when the wings are folded against the body, they do not perform the complete automatic wing folding nor the circumduction of the manus, a movement performed by extant volant birds. This study complements our knowledge of the axial musculature of the flightless paleognaths and highlights the use of the Greater Rhea as a model, which may help understand the evolution of Palaeognathae, as well as the origin of flapping flight among paravian theropods.
Assuntos
Reiformes , Struthioniformes , Animais , Voo Animal/fisiologia , Osteologia , Asas de Animais/anatomia & histologiaRESUMO
Megaraptora is a theropod clade known from former Gondwana landmasses and Asia. Most members of the clade are known from the Early to Late Cretaceous (Barremian-Santonian), with Maastrichtian megaraptorans known only from isolated and poorly informative remains. The aim of the present contribution is to describe a partial skeleton of a megaraptorid from Maastrichtian beds in Santa Cruz Province, Argentina. This new specimen is the most informative megaraptoran known from Maastrichtian age, and is herein described as a new taxon. Phylogenetic analysis nested the new taxon together with other South American megaraptorans in a monophyletic clade, whereas Australian and Asian members constitute successive stem groups. South American forms differ from more basal megaraptorans in several anatomical features and in being much larger and more robustly built.
Assuntos
Dinossauros , Fósseis , Animais , Argentina , Austrália , Dinossauros/anatomia & histologia , Filogenia , Crânio/anatomia & histologiaRESUMO
Dicraeosaurid sauropods are iconically characterized by the presence of elongate hemispinous processes in presacral vertebrae. These hemispinous processes can show an extreme degree of elongation, such as in the Argentinean forms Amargasaurus cazaui, Pilmatueia faundezi and Bajadasaurus pronuspinax. These hyperelongated hemispinous processes have been variably interpreted as a support structure for a padded crest/sail as a display, a bison-like hump or as the internal osseous cores of cervical horns. With the purpose to test these hypotheses, here we analyze, for the first time, the external morphology, internal microanatomy and bone microstructure of the hemispinous processes from the holotype of Amargasaurus, in addition to a second dicraeosaurid indet. (also from the La Amarga Formatin; Lower Cretaceous, Argentina). Transverse thin-sections sampled from the proximal, mid and distal portions of both cervical and dorsal hemispinous processes reveal that the cortical bone is formed by highly vascularized fibrolamellar bone interrupted with cyclical growth marks. Obliquely oriented Sharpey's fibres are mostly located in the medial and lateral portions of the cortex. Secondary remodelling is evidenced by the presence of abundant secondary osteons irregularly distributed within the cortex. Both anatomical and histological evidence does not support the presence of a keratinized sheath (i.e. horn) covering the hyperelongated hemispinous processes of Amargasaurus, and either, using a parsimonious criterium, in other dicraeosaurids with similar vertebral morphology. The spatial distribution and relative orientation of the Sharpey's fibres suggest the presence of an important system of interspinous ligaments that possibly connect successive hemispinous processes in Amargasaurus. These ligaments were distributed along the entirety of the hemispinous processes. The differential distribution of secondary osteons indicates that the cervical hemispinous processes of Amargasaurus were subjected to mechanical forces that generated higher compression strain on the anterior side of the elements. Current data support the hypothesis for the presence of a 'cervical sail' in Amargasaurus and other dicraeosaurids.
Assuntos
Dinossauros , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Ósteon , Ligamentos/anatomia & histologia , Coluna Vertebral/anatomia & histologiaRESUMO
Abelisaurids were one of the most successful theropod dinosaurs during Cretaceous times. They are featured by numerous derived skull traits, such as heavily ornamented bones, short and tall snout, and a strongly thickened cranial roof. Furthermore, nasals are distinctive on having two distinct nasal patterns: strongly transversely convex and heavily sculptured (e.g., Carnotaurus), and transversely concave, with marked bilateral crests and poorly sculptured surfaces (e.g., Rugops). Independently of the pattern, some abelisaurid nasals (e.g., Rugops) show a distinctive row of large foramina on the dorsal surface, which were in general associated to skin structures (scales). Skorpiovenator bustingorryi is a derived abelisaurid coming from the upper Cretaceous beds of northwestern Patagonia, represented by an almost complete skeleton including a well-preserved skull. Particularly, the skull of Skorpiovenator shows nasal bones characterized by being transversely concave, rimmed by lateral crests and with a conspicuous row of foramina on the dorsal surface. But more interesting is that the skull roof also exhibits a row of large foramina that seem to be continuous with the previous nasal foramina. CT scans made on the skull corroborates a novel feature within theropods: the nasal foramina on the external surface are linked to an internal canal that runs across the nasal bones. We compared this feature with CT scans of Carnotaurus and revealed that it also possess an internal system as in Skorpiovenator, but being notably smaller. The symmetry and disposition of the foramina in the nasal and skull roof bones of Skorpiovenator would indicate a neurovascular correlate (i.e., blood vessels and nerves), probably to the lateral nasal and supraorbital vessels and the trigeminal nerve. The biological significance of such neurovascular system can be conjectured from several hypotheses. A possible one involves an enhanced blood volume in these bones linked to a zone of thermal exchange, which may help avoid overheat of encephalic tissues. Another plausible hypothesis takes into account the presence of display skin structures in which blood volume nourished the mineralized skin, which would have a role in intraspecific communication. However, other more speculative explanations should not be discarded such as a correlation with integumentary sensory organs.
Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Fósseis , Cabeça , Crânio/anatomia & histologiaRESUMO
Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.
Assuntos
Dinossauros , Fósseis , Animais , Argentina , Evolução Biológica , Dinossauros/anatomia & histologia , Filogenia , Crânio/anatomia & histologiaRESUMO
We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non-pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small-sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally flexed wing-like squamosal. A well-defined longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non-pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic.
RESUMO
Unenlagia comahuensis was originally described as a phylogenetic link between nonavian dinosaurs and birds. Later it was interpreted by some authors as belonging to the deinonychosaurian clade Dromaeosauridae, and more recently as phylogenetically closer to birds than to dromaeosaurids. The only known specimen is represented by an incomplete skeleton, including vertebrae, incomplete scapular girdle, pelvis, and limbs, coming from Upper Cretaceous beds of Neuquén province, Patagonia, Argentina. The aim of the present paper is to include a detailed anatomical description of Unenlagia (currently only known by preliminary descriptions). Detailed analysis of Unenlagia anatomy resulted in the recognition of one possible additional Unenlagiidae synapomorphy (i.e., the presence of cup-like iliac articulation on ischium). We recognize derived anatomical traits that Unenlagia and kin share with birds, lending support to the interpretation that unenlagiids are stem-Avialae. Particularly, some appendicular features (e.g., scapula with subtriangular and relatively reduced acromion, poor outward projection of the glenoid and glenoidal lips on the scapula, lateral orientation of scapular glenoid, craniolaterally oriented deltopectoral crest of humerus) may be related to the acquisition of anatomical novelties that in birds are associated with flight. The present contribution on Unenlagia provides new data regarding the early evolution of avian features.
Assuntos
Dinossauros , Osteologia , Animais , Argentina , FilogeniaRESUMO
Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.
Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Filogenia , Animais , Calibragem , Crânio/anatomia & histologia , Fatores de Tempo , Asas de Animais/anatomia & histologia , Microtomografia por Raio-XRESUMO
Gondwanatheria is an enigmatic mammaliaform clade distributed in the Cretaceous and Paleogene of South America, Africa, Madagascar, India and Antarctica. The Mesozoic record in South America is restricted to the Latest Cretaceous of Río Negro and Chubut provinces, Argentina and Magallanes Region of southern Chile. The aim of the present contribution is to describe a new specimen of gondwanatherian mammaliaforms from beds belonging to the Maastrichtian Chorrillo Formation, cropping out 30 km SW of El Calafate, Santa Cruz Province, Argentina. It is represented by a single molariform referable to the species Magallanodon baikashkenke with which it shares a unique combination of characters. Analysis of the unique combination of characters exhibited by Magallanodon shed doubts on the monophyly of Ferugliotheriidae and suggest that South American taxa may be closely related to each other. The wide geographical distribution and occurrence of gondwanatherians on geological units of diverse origins suggest that they were capable of facing disparate environmental conditions.