Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 215(3): 108002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482232

RESUMO

Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.


Assuntos
Amiloide , Proteínas de Bactérias , Proteínas de Bactérias/química , Amiloide/química , Sequência de Aminoácidos , Sequências Repetitivas de Aminoácidos , Agregados Proteicos , Biofilmes
2.
Bioinformatics ; 38(16): 3968-3975, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35771625

RESUMO

MOTIVATION: Protein-protein interaction datasets, which can be modeled as networks, constitute an essential layer in multi-omics approach to biomedical knowledge. This representation gives insight into molecular pathways, help to uncover novel potential drug targets or predict a therapy outcome. Nevertheless, the data that constitute such systems are frequently incomplete, error-prone and biased by scientific trends. Implementation of methods for detection of such shortcomings could improve protein-protein interaction data analysis. RESULTS: We performed topological analysis of three protein-protein interaction networks (PPINs) from IntAct Molecular Database, regarding cancer, Parkinson's disease (two most common subjects in PPINs analysis) and Human Reference Interactome. The data collections were shown to be often biased by scientific interests, which highly impact the networks structure. This may obscure correct systematic biological interpretation of the protein-protein interactions and limit their application potential. As a solution to this problem, we propose a set of topological methods for the bias detection, which performed in the first step provides more objective biological conclusions regarding protein-protein interactions and their multi-omics consequences. AVAILABILITY AND IMPLEMENTATION: A user-friendly tool Extensive Tool for Network Analysis (ETNA) is available on https://github.com/AlicjaNowakowska/ETNA. The software includes a graphical Colab notebook: https://githubtocolab.com/AlicjaNowakowska/ETNA/blob/main/ETNAColab.ipynb. CONTACT: alicja.nowakowska@pwr.edu.pl or malgorzata.kotulska@pwr.edu.pl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mapas de Interação de Proteínas , Software , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...