Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390958

RESUMO

Staphylococcus aureus (S. aureus) causes a range of diseases ranging from superficial skin and soft-tissue infections to invasive and life-threatening conditions (Klevens et al., 2007; Kobayashi et al., 2015). S. aureus utilizes the Sae sensory system to adapt to neutrophil challenge. Although the roles of the SaeR response regulator and its cognate sensor kinase SaeS have been demonstrated to be critical for surviving neutrophil interaction and for causing infection, the roles for the accessory proteins SaeP and SaeQ remain incompletely defined. To characterize the functional role of these proteins during innate immune interaction, we generated isogenic deletion mutants lacking these accessory genes in USA300 (USA300ΔsaeP and USA300ΔsaeQ). S. aureus survival was increased following phagocytosis of USA300ΔsaeP compared to USA300 by neutrophils. Additionally, secreted extracellular proteins produced by USA300ΔsaeP cells caused significantly more plasma membrane damage to human neutrophils than extracellular proteins produced by USA300 cells. Deletion of saeQ resulted in a similar phenotype, but effects did not reach significance during neutrophil interaction. The enhanced cytotoxicity of USA300ΔsaeP cells toward human neutrophils correlated with an increased expression of bi-component leukocidins known to target these immune cells. A saeP and saeQ double mutant (USA300ΔsaePQ) showed a significant increase in survival following neutrophil phagocytosis that was comparable to the USA300ΔsaeP single mutant and increased the virulence of USA300 during murine bacteremia. These data provide evidence that SaeP modulates the Sae-mediated response of S. aureus against human neutrophils and suggest that saeP and saeQ together impact pathogenesis in vivo.

2.
J Vis Exp ; (155)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957747

RESUMO

Staphylococcus aureus is capable of secreting a wide range of leukocidins that target and disrupt the membrane integrity of polymorphonuclear leukocytes (PMNs or neutrophils). This protocol describes both the purification of human PMNs and the quantification of S. aureus cytotoxicity against PMNs in three different sections. Section 1 details the isolation of PMNs and serum from human blood using density centrifugation. Section 2 tests the cytotoxicity of extracellular proteins produced by S. aureus against these purified human PMNs. Section 3 measures the cytotoxicity against human PMNs following the phagocytosis of live S. aureus. These procedures measure disruption of PMN plasma membrane integrity by S. aureus leukocidins using flow cytometry analysis of PMNs treated with propidium iodide, a DNA binding fluorophore that is cell membrane impermeable. Collectively, these methods have the advantage of rapidly testing S. aureus cytotoxicity against primary human PMNs and can be easily adapted to study other aspects of host-pathogen interactions.


Assuntos
Neutrófilos/citologia , Neutrófilos/microbiologia , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/metabolismo , Morte Celular , Separação Celular , Citometria de Fluxo , Humanos , Fagocitose , Propídio/metabolismo
3.
Front Microbiol ; 9: 3085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619166

RESUMO

Staphylococcus aureus is a common Gram-positive bacteria that is a major cause of human morbidity and mortality. The SaeR/S two-component sensory system of S. aureus is important for virulence gene transcription and pathogenesis. However, the influence of SaeR phosphorylation on virulence gene transcription is not clear. To determine the importance of potential SaeR phosphorylation sites for S. aureus virulence, we generated genomic alanine substitutions at conserved aspartic acid residues in the receiver domain of the SaeR response regulator in clinically significant S. aureus pulsed-field gel electrophoresis (PFGE) type USA300. Transcriptional analysis demonstrated a dramatic reduction in the transcript abundance of various toxins, adhesins, and immunomodulatory proteins for SaeR with an aspartic acid to alanine substitution at residue 51. These findings corresponded to a significant decrease in cytotoxicity against human erythrocytes and polymorphonuclear leukocytes, the ability to block human myeloperoxidase activity, and pathogenesis during murine soft-tissue infection. Analysis of SaeR sequences from over 8,000 draft S. aureus genomes revealed that aspartic acid residue 51 is 100% conserved. Collectively, these results demonstrate that aspartic acid residue 51 of SaeR is essential for S. aureus virulence and underscore a conserved target for novel antimicrobial strategies that treat infection caused by this pathogen.

4.
J Infect Dis ; 217(6): 943-952, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29272502

RESUMO

Background: The ability of Staphylococcus aureus to evade killing by human neutrophils significantly contributes to disease progression. In this study, we characterize an influential role for the S. aureus SaeR/S 2-component gene regulatory system in suppressing monocyte production of tumor necrosis factor alpha (TNF-α) to subsequently influence human neutrophil priming. Methods: Using flow cytometry and TNF-α specific enzyme-linked immunosorbent assays we identify the primary cellular source of TNF-α in human blood and in purified peripheral blood mononuclear cells (PBMCs) during interaction with USA300 and an isogenic saeR/S deletion mutant (USA300∆saeR/S). Assays with conditioned media from USA300 and USA300∆saeR/S exposed PBMCs were used to investigate priming on neutrophil bactericidal activity. Results: TNF-α production from monocytes was significantly reduced following challenge with USA300 compared to USA300∆saeR/S. We observed that priming of neutrophils using conditioned medium from peripheral blood mononuclear cells stimulated with USA300∆saeR/S significantly increased neutrophil bactericidal activity against USA300 relative to unprimed neutrophils and neutrophils primed with USA300 conditioned medium. The increased neutrophil bactericidal activity was associated with enhanced reactive oxygen species production that was significantly influenced by elevated TNF-α concentrations. Conclusions: Our findings identify an immune evasion strategy used by S. aureus to impede neutrophil priming and subsequent bactericidal activity.


Assuntos
Proteínas de Bactérias/farmacologia , Staphylococcus aureus Resistente à Meticilina , Monócitos/metabolismo , Neutrófilos/imunologia , Proteínas Quinases/farmacologia , Fatores de Transcrição/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Bactérias/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Staphylococcus aureus Resistente à Meticilina/imunologia , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo
5.
Cell Host Microbe ; 22(5): 667-677.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120744

RESUMO

Staphylococcus aureus commonly colonizes the epidermis, but the mechanisms by which the host senses virulent, but not commensal, S. aureus to trigger inflammation remain unclear. Using a murine epicutaneous infection model, we found that S. aureus-expressed phenol-soluble modulin (PSM)α, a group of secreted virulence peptides, is required to trigger cutaneous inflammation. PSMα induces the release of keratinocyte IL-1α and IL-36α, and signaling via IL-1R and IL-36R was required for induction of the pro-inflammatory cytokine IL-17. The levels of released IL-1α and IL-36α, as well as IL-17 production by γδ T cells and ILC3 and neutrophil infiltration to the site of infection, were greatly reduced in mice with total or keratinocyte-specific deletion of the IL-1R and IL-36R signaling adaptor Myd88. Further, Il17a-/-f-/- mice showed blunted S. aureus-induced inflammation. Thus, keratinocyte Myd88 signaling in response to S. aureus PSMα drives an IL-17-mediated skin inflammatory response to epicutaneous S. aureus infection.


Assuntos
Alarminas/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Inflamação/imunologia , Interleucina-17/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Dermatite/imunologia , Dermatite/metabolismo , Dermatite/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/patologia , Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Queratinócitos/microbiologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Peptídeos/farmacologia , Receptores de Interleucina-1 , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Linfócitos T/metabolismo , Transativadores/metabolismo , Virulência
6.
PLoS One ; 11(10): e0164410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711145

RESUMO

Staphylococcus aureus is a leading cause of human infections worldwide. The pathogen produces numerous molecules that can interfere with recognition and binding by host innate immune cells, an initial step required for the ingestion and subsequent destruction of microbes by phagocytes. To better understand the interaction of this pathogen with human immune cells, we compared the association of S. aureus and S. epidermidis with leukocytes in human blood. We found that a significantly greater proportion of B cells associated with S. epidermidis relative to S. aureus. Complement components and complement receptors were important for the binding of B cells with S. epidermidis. Experiments using staphylococci inactivated by ultraviolet radiation and S. aureus isogenic deletion mutants indicated that S. aureus secretes molecules regulated by the SaeR/S two-component system that interfere with the ability of human B cells to bind this bacterium. We hypothesize that the relative inability of B cells to bind S. aureus contributes to the microbe's success as a human pathogen.


Assuntos
Linfócitos B/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/metabolismo , Linfócitos B/citologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Microscopia de Fluorescência , Fagocitose/fisiologia , Ligação Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos da radiação , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/efeitos da radiação , Raios Ultravioleta
7.
PLoS One ; 10(9): e0138084, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26359669

RESUMO

In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.


Assuntos
Antibacterianos/farmacologia , Quimiocinas CC/metabolismo , Mastite Bovina/microbiologia , Leite/imunologia , Receptores CCR10/metabolismo , Animais , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Células COS , Bovinos , Quimiocinas CC/genética , Quimiocinas CC/farmacologia , Quimiotaxia , Chlorocebus aethiops , Clonagem Molecular , Feminino , Regulação da Expressão Gênica , Mastite Bovina/imunologia
8.
J Innate Immun ; 6(1): 21-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23816635

RESUMO

The ability of Staphylococcus aureus to infect tissues is dependent on precise control of virulence through gene-regulatory systems. While the SaeR/S two-component system has been shown to be a major regulator of S. aureus virulence, the influence of the host environment on SaeR/S-regulated genes (saeR/S targets) remains incompletely defined. Using QuantiGene 2.0 transcriptional assays, we examined expression of genes with the SaeR binding site in USA300 exposed to human and mouse neutrophils and host-derived peptides and during subcutaneous skin infection. We found that only some of the saeR/S targets, as opposed to the entire SaeR/S virulon, were activated within 5 and 10 min of interacting with human neutrophils as well as α-defensin. Furthermore, mouse neutrophils promoted transcription of saeR/S targets despite lacking α-defensin, and the murine skin environment elicited a distinctive expression profile of saeR/S targets. These findings indicate that saeR/S-mediated transcription is unique to and dependent on specific host stimuli. By using isogenic USA300ΔsaeR/S and USA300Δagr knockout strains, we also determined that SaeR/S is the major regulator of virulence factors, while Agr, a quorum-sensing two-component system, has moderate influence on transcription of the saeR/S targets under the tested physiological conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Neutrófilos/imunologia , Pele/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Camundongos , Análise em Microsséries , Neutrófilos/microbiologia , Pele/microbiologia , Staphylococcus aureus/patogenicidade , Transativadores , Fatores de Transcrição , Transcriptoma , Virulência/genética , alfa-Defensinas/metabolismo
9.
J Leukoc Biol ; 94(5): 971-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24026286

RESUMO

This investigation examines the influence of α-toxin (Hla) expression by CA-MRSA on host immune cell integrity and cytokine expression during infection of human blood. Flow cytometry analysis of human blood infected by Staphylococcus aureus PFGE type USA300 or a USA300Δhla demonstrated that Hla expression significantly increased plasma membrane permeability of human CD14(+) monocytes. The increased susceptibility of human CD14(+) monocytes to Hla toxicity paralleled the high cell-surface expression on these cell types of ADAM10. USA300 rapidly associated with PMNs and monocytes but not T cells following inoculation of human blood. Transcription analysis indicated a strong up-regulation of proinflammatory cytokine transcription following infection of human blood by USA300 and USA300Δhla. CBAs and ELISAs determined that IL-6, IL-10, TNF-α, IFN-γ, IL-1ß, IL-8, and IL-4 are significantly up-regulated during the initial phases of human blood infection by USA300 relative to mock-infected blood but failed to distinguish any significant differences in secreted cytokine protein concentrations during infection by USA300Δhla relative to USA300. Collectively, these findings demonstrate that expression of Hla by USA300 has a significant impact on human CD14(+) monocyte plasma membrane integrity but is not exclusively responsible for the proinflammatory cytokine profile induced by USA300 during the initial stages of human blood infection.


Assuntos
Bacteriemia/imunologia , Toxinas Bacterianas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocinas/genética , Proteínas Hemolisinas/farmacologia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas/imunologia , Proteínas ADAM/sangue , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/sangue , Humanos , Receptores de Lipopolissacarídeos/sangue , Proteínas de Membrana/sangue
10.
Infect Immun ; 81(4): 1316-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381999

RESUMO

Several prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies of Staphylococcus aureus Nuc attributed its regulation to the agr quorum-sensing system. However, recent microarray data have indicated that nuc is under the control of the SaeRS two-component system, which is a major regulator of S. aureus virulence determinants. Here we report that the nuc gene is directly controlled by the SaeRS two-component system through reporter fusion, immunoblotting, Nuc activity measurements, promoter mapping, and binding studies, and additionally, we were unable identify a notable regulatory link to the agr system. The observed SaeRS-dependent regulation was conserved across a wide spectrum of representative S. aureus isolates. Moreover, with community-associated methicillin-resistant S. aureus (CA MRSA) in a mouse model of peritonitis, we observed in vivo expression of Nuc activity in an SaeRS-dependent manner and determined that Nuc is a virulence factor that is important for in vivo survival, confirming the enzyme's role as a contributor to invasive disease. Finally, natural polymorphisms were identified in the SaeRS proteins, one of which was linked to Nuc regulation in a CA MRSA USA300 endocarditis isolate. Altogether, our findings demonstrate that Nuc is an important S. aureus virulence factor and part of the SaeRS regulon.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nuclease do Micrococo/biossíntese , Proteínas Quinases/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/biossíntese , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Peritonite/microbiologia , Peritonite/patologia , Regulon , Staphylococcus aureus/genética , Fatores de Transcrição
11.
J Bacteriol ; 194(16): 4355-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685286

RESUMO

Staphylococcus aureus is a significant human pathogen that is capable of infecting a wide range of host tissues. This bacterium is able to evade the host immune response by utilizing a repertoire of virulence factors. These factors are tightly regulated by various two-component systems (TCS) and transcription factors. Previous studies have suggested that transcriptional regulation of a subset of immunomodulators, known as the staphylococcal superantigen-like proteins (Ssls), is mediated by the master regulators accessory gene regulator (Agr) TCS, S. aureus exoprotein expression (Sae) TCS, and Rot. Here we demonstrate that Rot and SaeR, the response regulator of the Sae TCS, synergize to coordinate the activation of the ssl promoters. We have determined that both transcription factors are required, but that neither is sufficient, for promoter activation. This regulatory scheme is mediated by direct binding of both transcription factors to the ssl promoters. We also demonstrate that clinically relevant methicillin-resistant S. aureus (MRSA) strains respond to neutrophils via the Sae TCS to upregulate the expression of ssls. Until now, Rot and the Sae TCS have been proposed to work in opposition of one another on their target genes. This is the first example of these two regulators working in concert to activate promoters.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Superantígenos/biossíntese , Humanos , Fatores de Transcrição
12.
PLoS One ; 7(5): e36532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574180

RESUMO

This investigation examines the influence of alpha-toxin (Hla) during USA300 infection of human leukocytes. Survival of an USA300 isogenic deletion mutant of hla (USA300Δhla) in human blood was comparable to the parental wild-type strain and polymorphonuclear leukocyte (PMN) plasma membrane permeability caused by USA300 did not require Hla. Flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) following infection by USA300, USA300Δhla, and USA300Δhla transformed with a plasmid over-expressing Hla (USA300Δhla Comp) demonstrated this toxin plays a significant role inducing plasma membrane permeability of CD14(+), CD3(+), and CD19(+) PBMCs. Rapid plasma membrane permeability independent of Hla was observed for PMNs, CD14(+) and CD19(+) PBMCs following intoxication with USA300 supernatant while the majority of CD3(+) PBMC plasma membrane permeability induced by USA300 required Hla. Addition of recombinant Hla to USA300Δhla supernatant rescued CD3(+) and CD19(+) PBMC plasma membrane permeability generated by USA300 supernatant. An observed delay in plasma membrane permeability caused by Hla in conjunction with Annexin V binding and ApoBrdU Tunel assays examining PBMCs intoxicated with recombinant Hla or infected with USA300, USA300Δhla, USA300Δhla Comp, and USA300ΔsaeR/S suggest Hla induces programmed cell death of monocytes, B cells, and T cells that results in plasma membrane permeability. Together these findings underscore the importance of Hla during S. aureus infection of human tissue and specifically demonstrate Hla activity during USA300 infection triggers programmed cell death of human monocytes, T cells and B cells that leads to plasma membrane permeability.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/microbiologia , Toxinas Bacterianas/genética , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Humanos , Leucócitos Mononucleares/microbiologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Deleção de Sequência , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/microbiologia
13.
Mol Microbiol ; 79(3): 814-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255120

RESUMO

Staphylococcus aureus is an important pathogen that continues to be a significant global health threat because of the prevalence of methicillin-resistant S. aureus strains (MRSA). The pathogenesis of this organism is partly attributed to the production of a large repertoire of cytotoxins that target and kill innate immune cells, which provide the first line of defence against S. aureus infection. Here we demonstrate that leukocidin A/B (LukAB) is required and sufficient for the ability of S. aureus, including MRSA, to kill human neutrophils, macrophages and dendritic cells. LukAB targets the plasma membrane of host cells resulting in cellular swelling and subsequent cell death. We found that S. aureus lacking lukAB are severely impaired in their ability to kill phagocytes during bacteria-phagocyte interaction, which in turn renders the lukAB-negative staphylococci more susceptible to killing by neutrophils. Notably, we show that lukAB is expressed in vivo within abscesses in a murine infection model and that it contributes significantly to pathogenesis of MRSA in an animal host. Collectively, these results extend our understanding of how S. aureus avoids phagocyte-mediated clearance, and underscore LukAB as an important factor that contributes to staphylococcal pathogenesis.


Assuntos
Citotoxinas/metabolismo , Staphylococcus aureus/patogenicidade , Morte Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoproteção , Células HL-60 , Humanos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Fagócitos/citologia , Fagócitos/metabolismo , Fagócitos/ultraestrutura
14.
Biochemistry ; 49(13): 2834-42, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180543

RESUMO

The heme-binding proteins Shp and HtsA of Streptococcus pyogenes are part of the heme acquisition machinery in which Shp directly transfers its heme to HtsA. Mutagenesis and spectroscopic analyses were performed to identify the heme axial ligands in HtsA and to characterize axial mutants of HtsA. Replacements of the M79 and H229 residues, not the other methionine and histidine residues, with alanine convert UV-vis spectra of HtsA with a low-spin, hexacoordinate heme iron into spectra of high-spin heme complexes. Ferrous M79A and H229A HtsA mutants possess magnetic circular dichroism (MCD) spectra that are similar with those of proteins with pentacoordinate heme iron. Ferric M79A HtsA displays UV-vis, MCD, and resonance Raman (RR) spectra that are typical of a hexacoordinate heme iron with histidine and water ligands. In contrast, ferric H229A HtsA has UV-vis, MCD, and RR spectra that represent a pentacoordinate heme iron complex with a methionine axial ligand. Imidazole readily forms a low-spin hexacoordinate adduct with M79A HtsA with a K(d) of 40.9 muM but not with H229A HtsA, and cyanide binds to M79A and H229A with K(d) of 0.5 and 19.1 microM, respectively. The ferrous mutants rapidly bind CO and form simple CO complexes. These results establish the H229 and M79 residues as the axial ligands of the HtsA heme iron, indicate that the M79 side is more accessible to the solvent than the H229 side of the bound heme in HtsA, and provide unique spectral features for a protein with pentacoordinate, methionine-ligated heme iron. These findings will facilitate elucidation of the molecular mechanism and structural basis for rapid and direct heme transfer from Shp to HtsA.


Assuntos
Proteínas de Transporte/química , Heme/metabolismo , Hemeproteínas/química , Streptococcus pyogenes/química , Proteínas de Bactérias , Monóxido de Carbono/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Ligantes , Mutação de Sentido Incorreto , Análise Espectral
15.
J Infect Dis ; 201(2): 241-54, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20001858

RESUMO

This investigation examines the role of the SaeR/S 2-component system in USA300, a prominent circulating clone of community-associated methicillin-resistant Staphylococcus aureus. Using a saeR/S isogenic deletion mutant of USA300 (USA300DeltasaeR/S) in murine models of sepsis and soft-tissue infection revealed that this sensory system is critical to pathogenesis of USA300 during both superficial and invasive infection. Oligonucleotide microarray and real-time reverse-transcriptase polymerase chain reaction identified numerous extracellular virulence genes that are down-regulated in USA300DeltasaeR/S. Unexpectedly, an up-regulation of mecA and mecR1 corresponded to increased methicillin resistance in USA300DeltasaeR/S. 5'-RACE analysis defined transcript start sites for sbi, efb, mecA, lukS-PV, hlb, SAUSA300_1975, and hla, to underscore a conserved consensus sequence within promoter regions of genes under strong SaeR/S transcriptional regulation. Electrophoretic mobility shift assay experiments illustrated direct binding of SaeR(His) to promoter regions containing the conserved consensus sequence. Collectively, the findings of this investigation demonstrate that SaeR/S directly interacts with virulence gene promoters to significantly influence USA300 pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Regiões Promotoras Genéticas/genética , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/fisiologia , Infecções Comunitárias Adquiridas/microbiologia , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Deleção de Sequência , Infecções dos Tecidos Moles/microbiologia , Fatores de Transcrição , Regulação para Cima
16.
J Infect Dis ; 199(11): 1698-706, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19374556

RESUMO

Methicillin-resistant Staphylococcus aureus is problematic both in hospitals and in the community. Currently, we have limited understanding of mechanisms of innate immune evasion used by S. aureus. To that end, we created an isogenic deletion mutant in strain MW2 (USA400) of the saeR/S 2-component gene regulatory system and studied its role in mouse models of pathogenesis and during human neutrophil interaction. In this study, we demonstrate that saeR/S plays a distinct role in S. aureus pathogenesis and is vital for virulence of MW2 in a mouse model of sepsis. Moreover, deletion of saeR/S significantly impaired survival of MW2 in human blood and after neutrophil phagocytosis. Microarray analysis revealed that SaeR/S of MW2 influences expression of a wide variety of genes with diverse biological functions. These data provide new insight into how virulence is regulated in S. aureus and associates a specific staphylococcal gene-regulatory system with invasive staphylococcal disease.


Assuntos
Proteínas de Bactérias/genética , Imunidade Inata/genética , Proteínas Quinases/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Mutagênese , Neutrófilos/microbiologia , Neutrófilos/fisiologia , Fagocitose , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/microbiologia , Deleção de Sequência , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/patogenicidade , Fatores de Transcrição , Virulência
17.
Curr Opin Infect Dis ; 21(2): 147-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18317037

RESUMO

PURPOSE OF REVIEW: In recent years there has been an increase in the incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections in healthy individuals, the cause of which is largely unknown. CA-MRSA primarily causes skin and soft-tissue infections but certain strains are also associated with unusually severe pathology. The purpose of this review is to provide a critical analysis of our current knowledge of virulence factors contributing to skin and soft-tissue infections caused by CA-MRSA. RECENT FINDINGS: Isolates classified as pulsed-field gel electrophoresis type USA300 have emerged as the predominant CA-MRSA genotype and in most geographic areas account for 97% or more of CA-MRSA infections. Recent key studies, such as those reporting the complete genome sequence of USA300, and the discovery of cytolytic peptides that contribute significantly to CA-MRSA virulence, lead the way for future investigations. SUMMARY: Although we have only a cursory understanding of the molecular mechanisms of CA-MRSA virulence, studies using clinically relevant CA-MRSA isolates are beginning to identify virulence determinants specific to this pathogen. Identifying CA-MRSA virulence determinants and the concerted regulation of these factors will foster development of vaccines and therapeutics designed to control CA-MRSA skin infections.


Assuntos
Resistência a Meticilina , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus , Fatores de Virulência/genética , Infecções Comunitárias Adquiridas/microbiologia , Humanos , Leucocidinas/genética , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Virulência/fisiologia
18.
BMC Microbiol ; 6: 82, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17007644

RESUMO

BACKGROUND: Heme is a preferred iron source of bacterial pathogens. Streptococcus equi subspecies equi is a bacterial pathogen that causes strangles in horses. Whether S. equi has a heme acquisition transporter is unknown. RESULTS: An S. equi genome database was blasted with the heme binding proteins Shp and HtsA of Streptococcus pyogenes, and found that S. equi has the homologue of Shp (designated SeShp) and HtsA (designated SeHtsA). Tag-free recombinant SeShp and SeHtsA and 6xHis-tagged SeHtsA (SeHtsAHis) were prepared and characterized. Purified holoSeShp and holoSeHtsA bind Fe(II)-protoporphyrin IX (heme) and Fe(III)-protoporphyrin IX (hemin) in a 1:1 stoichiometry, respectively, and are designated hemoSeShp and hemiSeHtsA. HemiSeShp and hemiSeHtsAHis can be reconstituted from apoSeShp and apoSeHtsAHis and hemin. HemoSeShp is stable in air and can be oxidized to hemiSeShp by ferricyanide. HemiSeHtsA can be reduced into hemoSeHtsA, which autoxidizes readily. HemoSeShp rapidly transfers its heme to apoSeHtsAHis. In addition, hemoSeShp can also transfer its heme to apoHtsA, and hemoShp is able to donate heme to apoSeHtsAHis. CONCLUSION: The primary structures, optical properties, oxidative stability, and in vitro heme transfer reaction of SeShp and SeHtsA are very similar to those of S. pyogenes Shp and HtsA. The data suggest that the putative cell surface protein SeShp and lipoprotein SeHtsA are part of the machinery to acquire heme in S. equi. The results also imply that the structure, function, and functional mechanism of the heme acquisition machinery are conserved in S. equi and S. pyogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Streptococcus equi/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Transporte/química , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Dados de Sequência Molecular , Ligação Proteica , Streptococcus equi/classificação
19.
J Biol Chem ; 281(30): 20761-20771, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16717094

RESUMO

The heme-binding proteins Shp and HtsA are part of the heme acquisition machinery found in Streptococcus pyogenes. The hexacoordinate heme (Fe(II)-protoporphyrin IX) or hemochrome form of holoShp (hemoShp) is stable in air in Tris-HCl buffer, pH 8.0, binds to apoHtsA with a K(d) of 120 +/- 18 microm, and transfers its heme to apoHtsA with a rate constant of 28 +/- 6s(-1) at 25 degrees C, pH 8.0. The hemoHtsA product then autoxidizes to the hexacoordinate hemin (Fe(III)-protoporphyrin IX) or hemichrome form (hemiHtsA) with an apparent rate constant of 0.017 +/- 0.002 s(-1). HemiShp also rapidly transfers hemin to apoHtsA through a hemiShp.apoHtsA complex (K(d) = 48 +/- 7 microM) at a rate approximately 40,000 times greater than the rate of simple hemin dissociation from hemiShp into solvent (k(transfer) = 43 +/- 3s(-1) versus k(-hemin) = 0.0003 +/- 0.00006 s(-1)). The rate constants for hemin binding to and dissociation from HtsA (k'(hemin) approximately 80 microm(-1) s(-1), k(-hemin) = 0.0026 +/- 0.0002 s(-1)) are 50- and 10-fold greater than the corresponding rate constants for Shp (k(hemin) approximately 1.6 microM(-1) s(-1), k(-hemin) = 0.0003 s(-1)), which implies that HtsA has a more accessible active site. However, the affinity of apoHtsA for hemin (k(hemin) approximately 31,000 microm(-1)) is roughly 5-fold greater than that of apoShp (k(hemin) approximately 5,300 microM(-1)), accounting for the net transfer from Shp to HstA. These results support a direct, rapid, and affinity-driven mechanism of heme and hemin transfer from the cell surface receptor Shp to the ATP-binding cassette transporter system.


Assuntos
Heme/química , Hemeproteínas/fisiologia , Streptococcus pyogenes/metabolismo , Trifosfato de Adenosina/química , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Hemeproteínas/genética , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Membrana Transportadoras/química , Modelos Químicos , Oxigênio/química , Oxigênio/metabolismo , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA