Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 11(5): e1318, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36314753

RESUMO

As continued growth in gut microbiota studies in captive and model animals elucidates the importance of their role in host biology, further pursuit of how to retain a wild-like microbial community is becoming increasingly important to obtain representative results from captive animals. In this study, we assessed how the gut microbiota of two wild-caught small mammals, namely Crocidura russula (Eulipotyphla, insectivore) and Apodemus sylvaticus (Rodentia, omnivore), changed when bringing them into captivity. We analyzed fecal samples of 15 A. sylvaticus and 21 C. russula, immediately after bringing them into captivity and 5 weeks later, spread over two housing treatments: a "natural" setup enriched with elements freshly collected from nature and a "laboratory" setup with sterile artificial elements. Through sequencing of the V3-V4 region of the 16S recombinant RNA gene, we found that the initial microbial diversity dropped during captivity in both species, regardless of treatment. Community composition underwent a change of similar magnitude in both species and under both treatments. However, we did observe that the temporal development of the gut microbiome took different trajectories (i.e., changed in different directions) under different treatments, particularly in C. russula, suggesting that C. russula may be more susceptible to environmental change. The results of this experiment do not support the use of microbially enriched environments to retain wild-like microbial diversities and compositions, yet show that specific housing conditions can significantly affect the drift of microbial communities under captivity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Fezes , Mamíferos/genética , RNA Ribossômico 16S/genética
2.
PeerJ ; 10: e12992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223211

RESUMO

The microbial gut communities of fish are receiving increased attention for their relevance, among others, in a growing aquaculture industry. The members of these communities are often split into resident (long-term colonisers specialised to grow in and adhere to the mucus lining of the gut) and transient (short-term colonisers originated from food items and the surrounding water) microorganisms. Separating these two communities in small fish are impeded by the small size and fragility of the gastrointestinal tract. With the aim of testing whether it is possible to recover two distinct communities in small species of fish using a simple sampling technique, we used 16S amplicon sequencing of paired intestinal wall and digesta samples from three small Cyprinodontiformes fish. We examined the diversity and compositional variation of the two recovered communities, and we used joint species distribution modelling to identify microbes that are most likely to be a part of the resident community. For all three species we found that the diversity of intestinal wall samples was significantly lower compared to digesta samples and that the community composition between sample types was significantly different. Across the three species we found seven unique families of bacteria to be significantly enriched in samples from the intestinal wall, encompassing most of the 89 ASVs enriched in intestinal wall samples. We conclude that it is possible to characterise two different microbial communities and identify potentially resident microbes through separately analysing samples from the intestinal wall and digesta from small species of fish. We encourage researchers to be aware that different sampling procedures for gut microbiome characterization will capture different parts of the microbiome and that this should be taken into consideration when reporting results from such studies on small species of fish.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Peixes/microbiologia , Intestinos/microbiologia , Bactérias/genética
3.
Anim Microbiome ; 3(1): 76, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711286

RESUMO

BACKGROUND: Due to its central role in animal nutrition, the gut microbiota is likely a relevant factor shaping dietary niche shifts. We analysed both the impact and contribution of the gut microbiota to the dietary niche expansion of the only four bat species that have incorporated fish into their primarily arthropodophage diet. RESULTS: We first compared the taxonomic and functional features of the gut microbiota of the four piscivorous bats to that of 11 strictly arthropodophagous species using 16S rRNA targeted amplicon sequencing. Second, we increased the resolution of our analyses for one of the piscivorous bat species, namely Myotis capaccinii, and analysed multiple populations combining targeted approaches with shotgun sequencing. To better understand the origin of gut microorganisms, we also analysed the gut microbiota of their fish prey (Gambusia holbrooki). Our analyses showed that piscivorous bats carry a characteristic gut microbiota that differs from that of their strict arthropodophagous counterparts, in which the most relevant bacteria have been directly acquired from their fish prey. This characteristic microbiota exhibits enrichment of genes involved in vitamin biosynthesis, as well as complex carbohydrate and lipid metabolism, likely providing their hosts with an enhanced capacity to metabolise the glycosphingolipids and long-chain fatty acids that are particularly abundant in fish. CONCLUSIONS: Our results depict the gut microbiota as a relevant element in facilitating the dietary transition from arthropodophagy to piscivory.

4.
iScience ; 23(8): 101414, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32777774

RESUMO

From ontogenesis to homeostasis, the phenotypes of complex organisms are shaped by the bidirectional interactions between the host organisms and their associated microbiota. Current technology can reveal many such interactions by combining multi-omic data from both hosts and microbes. However, exploring the full extent of these interactions requires careful consideration of study design for the efficient generation and optimal integration of data derived from (meta)genomics, (meta)transcriptomics, (meta)proteomics, and (meta)metabolomics. In this perspective, we introduce the holo-omic approach that incorporates multi-omic data from both host and microbiota domains to untangle the interplay between the two. We revisit the recent literature on biomolecular host-microbe interactions and discuss the implementation and current limitations of the holo-omic approach. We anticipate that the application of this approach can contribute to opening new research avenues and discoveries in biomedicine, biotechnology, agricultural and aquacultural sciences, nature conservation, as well as basic ecological and evolutionary research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...